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Abstract Two approaches to correlative species distri-
bution models (MaxEnt and Multi-Model Framework)
were used to predict global and local potential distribu-
tion of huanglongbing (HLB) caused by Candidatus
Liberibacter asiaticus (CLas) and its vector the Asian
citrus psyllid (ACP, Diaphorina citri Kuwayama).
Long-term climate data were sourced from the
Worldclim website. The global distribution of CLas
and ACP was gathered from online databases, literature
review and communication with specialists. Data on
Clas and ACP distribution in the USA were not used
in model calibration to allow model validation for inde-
pendent locations. Both models successfully predicted
Florida and coastal areas in the Gulf Coast states as
highly suitable for Clas and ACP. The models also
predicted that coastal areas in California were

climatologically favorable for ACP and Clas, but less
so than in Florida. When current USA presence data
were included in the models, the suitable areas for ACP
establishment expanded to the Central Valley, CA, while
this area remained less conducive for CLas. Climate
suitability was primarily related to rainfall and second-
arily to temperature. Globally, both models predicted
that climates in large areas of Africa, Latin America
and North Australia were highly suitable for ACP and
CLas, while the climate in the Mediterranean area was
moderately suitable for ACP but less suitable for CLas,
except for that in southern Portugal and Spain. Clas
predictions from our models could be informative for
countries like Australia, New Zealand, citrus-producing
European countries and much of Africa, where CLas
and D. citri have not been reported.

Keywords Citrus greening .CandidatusLiberibacter
asiaticus .Diaphorinacitri .Speciesdistributionmodels .
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Introduction

The pathogen and its vector

Citrus greening or huanglongbing (HLB) is one of the
most destructive diseases of citrus in the world, and
accounts for substantial economic losses in Asia,
Africa and the American continent. The causal agents
of the disease are Candidatus Liberibacter spp., gram-
negative bacteria that are limited to phloem and have not
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been cultured consistently (Gottwald 2010).
Characteristic symptoms of the disease include yellow
shoots, blotchy mottle on older leaves, and lop-sided
and off-flavor fruits, as well as a severe drop in produc-
tion of usable fruit. Severely infected trees often appear
stunted, sparsely foliated and die back, losing their
economic viability (Gottwald 2010).

There are three currently known forms of the path-
ogen causing HLB: Candidatus Liberibacter asiaticus
(CLas) occurring in Asia and the Americas,
Candidatus Liberibacter africanus documented in
Africa (CLaf) , and Candidatus Liberibacter
americanus (CLam) in Brazil (da Graca and Korsten
2004). CLaf is transmitted by the African citrus psyl-
lid (Trioza erytreae del Guercio) and usually occurs
in cool and moist regions in highlands (mostly above
900 m), with temperatures below 30 °C (optimum
22–25 °C). Its vector T. erytreae is sensitive to tem-
peratures above 32 °C (da Graca and Korsten 2004).
The Asian form, CLas, transmitted by the Asian
citrus psyllid or ACP (Diaphorina citri Kuwayama),
is more heat tolerant and can withstand temperatures
of 30–35 °C, while the optimal temperature range for
ACP is 25–28 °C (da Graca and Korsten 2004).
D. citri normally feeds and oviposits on young twigs
and leaves (flush), and injection and acquisition of
CLas by ACP is related to the behavior of the
nymphs and adults feeding from the phloem sap of
the host plant (Chiyaka et al. 2012; Lee et al. 2015).
CLas has been observed in the alimentary canal,
salivary glands and haemolymph of ACP and can
multiply in its vector (Ammar et al. 2011).
Transmission to a previously uninfected tree primar-
ily takes place when infectious adults inject saliva
into flush tissues. CLas transmission can also occur
by grafting of infected plant materials (Lopes and
Frare 2007).

The latency period between infection of flush and
acquisition of CLas by ACP nymphs can be as short as
15 days (Lee et al. 2015). Optimal acquisition and
transmission requires flush colonization by nymphs.
Adults emerging from infected nymphs are directly
capable of transmission (Lee et al. 2015). The incuba-
tion period, from the time of infection until HLB symp-
tom appearance, is much longer and can vary from a few
months to several years (Shen et al. 2013). Previous
studies suggest that young trees have a shorter incuba-
tion time compared to 7–10 year-old trees (6–12 months
vs. 1–2.5 year) (Gottwald 2010; Manjunath et al. 2008).

Current distribution

All Citrus species and cultivars and some related plant
genera like Murraya are susceptible to infection by
CLas (Halbert et al. 2012; Manjunath et al. 2008).
CLas dispersal takes place not only by movement of
adult psyllids, but also by transportation of infected
nursery stock of Citrus and related genera (Gottwald
2010; Lopes and Frare 2007). The latter route may be
more important for long distance spread (Halbert et al.
2012).

The Asian form of the pathogen is widespread in
most citrus growing countries in East and South Asia,
as well as South, Central and North America, wherever
citrus is grown (Bove 2014). In the USA, ACP was first
reported in South Florida on a key lime tree in 1998; and
in 3 years it spread into 31 counties in Florida (Grafton-
Cardwell et al. 2014; Halbert 2005; Shen et al. 2013).
CLas was first reported in South Florida in 2005
(Halbert 2005), and spread from there throughout pen-
insular Florida in less than 10 years (Shen et al. 2013). In
2001, ACP was found in Texas and in 2012, CLas was
reported on sweet orange in San Juan, Texas (Kunta
et al. 2012). In 2008, ACP was reported in Alabama,
Georgia, Louisiana, Mississippi and South Carolina
(Marutani-Hert et al. 2010), and in the meantime, HLB
was observed in Georgia, Louisiana and South Carolina
(Marutani-Hert et al. 2010). ACP also has been found in
Southern California since 2008, and has spread to the
citrus growing areas in the Central Valley since then.
CLas was detected in one tree in Los Angeles in 2012
and in nine other trees in the same neighborhood in 2015
(in seven properties in the Los Angeles area) (Kumagai
et al. 2014; CDFA 2015; http://www.cdfa.ca.gov/plant/
pe/interiorexclusion/hlb_quarantine.html). Thus, it is
still limited to the Los Angeles area.

Despite the production of healthy nursery stock in an
ACP-free environment since 2008 (Halbert et al. 2012)
and regular insecticide applications to control ACP in
citrus groves in Florida, the disease has spread unabat-
edly. Eradication of infected trees may have slowed
down HLB spread in very large groves, but has not been
effective in areas with smaller operations (Bassanezi
et al. 2012). ACP populations with insecticide resistance
have developed (Tiwari et al. 2011) and complete vector
control is impossible (Gottwald 2010). Finally, methods
to control the pathogen in infected trees, for example by
heat treatment or antibiotics, have not been developed
fully (Zhang et al. 2011).
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Previous HLB and ACP models

Several models were developed for the spread of ACP
and HLB in trees, groves or at local and regional scales.
In a deterministic analytical simulation model of CLas
transmission within a citrus tree, Chiyaka et al. (2012)
found that the rate of flush-to-flushCLas spread through
a tree and the latency development rate for psyllid
transmission were important variables affecting HLB
development. A similar model with delay functions for
the incubation period and egg-nymph stages predicted
complete symptomatic infection of a grove in 5 years
(Vilamiu et al. 2012). An individual tree- and insect-
based deterministic model for one grove predicted a
relatively slow spread: it took more than 7 years for a
field to become fully infected (Kobori et al. 2012). In the
latter model, the latent period was assumed to be
3 months, but it can be less than 15 days, which would
result in much faster spread (Lee et al. 2015). The spread
of ACP populations and tree-to-tree infections within a
small grove can be so fast that all trees can become
asymptomatically infected within 1 or 2 years, depend-
ing on the initial spatial colonization pattern of ACP, as
predicted by another individual-based microsimulation
model (Lee et al. 2015). A stochastic dispersal model of
HLB over a number of citrus blocks differing in age in a
very large orchard predicted that, in the presence of
intensive control measures, the rate of disease spread
would depend on the age of the trees and seasonal host
susceptibility (Parry et al. 2014). At an even larger scale,
a simulation model for the effects of temperature on
citrus flushing and ACP development predicted that
the current climatic conditions in Northern and Eastern
Australia are conducive for ACP establishment, even
thoughCLas and ACP are not present there (Aurambout
et al. 2009). Similarly, a temperature-based simulation
model for ACP, HLB and citrus production predicted
that areas around the Gulf of Mexico and the
Mediterranean Sea would be prone to invasion by
ACP and HLB (Gutierrez and Ponti 2013). The climatic
suitability for citrus growth (based on temperature, rain-
fall and evapotranspiration) and for ACP multiplication
(based on temperature), and the potential distribution of
ACP (and implicitly HLB) was also assessed using the
SIMPEC modeling structure for various locations in
Mexico (Torres-Pacheco et al. 2013). The Pacific coastal
area (including areas in Mexico close to California) and
the Southern Gulf coast area were considered most
conducive to ACP establishment. CLas has been

documented for the Northwest of Mexico but no official
documentation is available for the South of Mexico
(Torres-Pacheco et al. 2013). This last area, with a
similar climate as citrus producing areas in Brazil,
Cuba and Florida, would be most conducive for HLB
caused by CLas.

Recent models (Lee et al. 2015) as well as observa-
tions (Shen et al. 2013) indicate that regional spread of
CLas infection can be very fast. Nevertheless, there are
still areas that are (relatively) free from this disease. For
example, CLas has not been documented for Australia
and parts of North America. A single incidence of HLB
caused by CLas and numerous sightings of ACP in
California raised concerns about the likelihood of HLB
establishment in this area and elsewhere in the USA.
However, few risk assessment models currently are
available for predicting the potential establishment of
HLB in those regions (Gutierrez and Ponti 2013), de-
spite a call for predictive global mapping of HLB more
than 10 years ago (da Graca and Korsten 2004). Current
models on potential regional spread of HLB caused by
CLas are based on the climatic suitability of various
locations for ACP (Aurambout et al. 2009; Gutierrez
and Ponti 2013; Torres-Pacheco et al. 2013). Although
insect transmission is one of the major factors in disease
spread, the risk of HLB establishment should not be
based merely on risk establishment of the vector, be-
cause the pathogen may have different environmental
requirements than its vector (Gottwald 2010).
Therefore, the objectives of this study were to: (i) model
the potential distribution of both ACP and HLB (caused
by CLas) worldwide with a focus on the USA, (ii) to
identify climatic variables important for the potential
establishment of ACP and HLB, (iii) to compare the
predictions of the likelihood of HLB and ACP estab-
lishment by different models, and (iv) to identify
hotspots with a high probability of establishment of both
HLB (Clas) and ACP according to a consensus model.

To address these objectives, we used several single-
species distribution models (SDMs). SDMs relate the
current distribution of the target species to historical
environmental data and then predict the potential distri-
bution based on similarity of the environmental data.
They can involve mechanistic or correlative modeling.
SDMs have been widely used to assess the potential
distribution of different organisms such as invasive
plants, insects and pathogens into new areas (Narouei
Khandan 2014; Narouei Khandan et al. 2013). We used
two types of correlative modeling approaches to assess
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the climate suitability for CLas and ACP: 1) MaxEnt as
a presence-only or presence-background model
(Phillips et al. 2006) and 2) Multi-Model Framework
(MMF) that includes nine different presence- pseudo-
absence models (Worner et al. 2010) .

Materials and methods

Occurrence (presence) data

To acquire geo-referenced data of HLB caused by CLas
and ACP incidence in latitude-longitude format, the
published occurrence localities were cross-checked with
literature and personal communication with experts. We
only used HLB (CLas) occurrence data where the pres-
ence of the pathogen had been confirmed by PCR or
official reports. Reports that were only based on visual
assessments were not included. When the name of a city
or town was mentioned as the presence locality of HLB
or ACP, Google Earth (https://www.google.com/earth/)
and its satellite imagery capability was used to locate the
nearest citrus grove and determine its latitude and
longitude. In total, 208 points were collected for HLB
and 268 points for ACP (Table S1). Locations in the
USA where HLB or ACP were reported were not used
for model calibration (Fig. 1). Instead, they were used to

evaluate the performance of the models. To test if the
predictions would change when USA data were includ-
ed, the models were run again with the complete global
data set after appropriate rarefication. The resulting
presence data were 224 and 299 for HLB and ACP,
respectively.

Environmental data

Climate data, including 19 bioclimatic variables, were
acquired from the Worldclim website (www.worldclim.
org) (Table S2). These variables have been derived from
long-term (1950–2000) monthly temperature and rain
data (Hijmans et al. 2005), and are assumed to reflect the
climate suitability for the growth and development of
different organisms including plant pathogens (Hijmans
et al. 2005). The bioclim data resolution for this study
was in 10 arc minutes (around 18.6 km).

MaxEnt modelling

In MaxEnt, the presence locations of the target species
(occurrence data) were compared versus background
points (the localities where the presence or absence of
the target species was unidentified or unknown). To
avoid model overfitting of spatially clustered presence
points and not being able to predict spatially independent

Fig. 1 Current global distribution of citrus Huanglonbing, HLB, caused byCLas (a) andAsian Citrus Psyllid, ACP (b). Occurrence of HLB
and ACP in the USAwere not included in the models
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data, the presence data were spatially rarified using
SDMtoolbox (Brown 2014). This process reduced the
HLB (CLas) and ACP presence points from 208 to 174
and from 268 to 254, respectively, when the USA data
were left out. In addition, to avoid too large a background
extent around presence points, potentially resulting in the
failure of the model to predict the suitability of
un-colonized locations that might be climatically suitable
for the species, the background optimization method
suggested by Senay et al.(2013) was used. Thus, circles
with a radius of 500 km around the presence points were
selected as the most appropriate background extent,
because ACP can spread several hundred km
(Lewis-Rosenblum et al. 2015) . The SDMToolbox
was also used to determine variables that were highly
correlated (Pearson’s correlations higher than 0.8). The
random forest option that generates 1000 decision trees
in MMF was then used to select significant bioclimatic
variables among the variables that were not highly cor-
related (Breiman 2001). This resulted in the selection of
11 and 10 bioclimatic variables for HLB and ACP,
respectively (Table 1). These reduced sets of variables

gave improved model fit and computation time. The
same variables selected by the random forest program
in MMF were also used in MaxEnt, because this model
does not have a robust method for variable selection like
the random forest program. We used 75 % of the pres-
ence data to train the model and 25 % for model valida-
tion (in addition to the USA presence points which were
not used in the modelling process). As MaxEnt fails
to make predictions for areas where the climate is
considerably different from the current range of the
target species, the MESS analysis (‘Multivariate
Environmental Similarity Surfaces’) was performed to
determine if the model extrapolated appropriately in the
areas of interest. Because we had enough presence points
for HLB and ACP, default features were used in the
MaxEnt models for both ‘species’ (Merow et al. 2013).
The model was set to run with 5000 iterations and
>10,000 background points. The model was also set to
run the jackknife test, which evaluates variable impor-
tance, and to produce response curves showing how each
environmental variable affected the model prediction.
The MaxEnt prediction performance for the validation
locations (25 % of the data set) was evaluated by area
under the curve or AUC (Phillips et al. 2006). The AUC
is calculated based on a confusion matrix which com-
prises the frequency of each possible type of binary
prediction. The AUC plots true positive predictions
(presence locations with correct predictions) versus false
positive predictions (the absence locations which were
incorrectly predicted as presence).

Multi-Model Framework

To evaluate the outcomes of several modeling methods
we used the Multi-Model Framework (MMF) devel-
oped by the Ecological Informatics Group in the Bio-
Protection Research Centre, Lincoln University (Senay
et al. 2013; Worner et al. 2010). Nine presence-
pseudoabsence species distribution models that estimate
probability of presence based on climatic suitability
were used within the MMF which include: logistic
regression (LOG), linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), classification
and regression trees (CART), naıve Bayes (NB), condi-
tional trees (CTREE), K-nearest neighbor (KNN), arti-
ficial neural networks (NNET) and support vector ma-
chines (SVM).

Because true absence points are usually unavailable
in ecological studies, the alternative is to generate

Table 1 Average percent contribution (out of 5000 iterations) of
environmental variables used in the MaxEnt model for prediction
of global distribution of huanglongbing, HLB caused by CLas,
and the Asian Citrus Psyllid, ACP

Variables % of
contribution

HLB ACP

Cbio01=Annual Mean Temperature 1.4 0.3

Cbio02=Mean Diurnal Range (Mean of monthly
(max temp - min temp))

3.6 −1

Cbio04=Temperature Seasonality
(standard deviation *100)

6.7 –

Cbio06=Min Temperature of Coldest Month 15.8 30.1

Cbio07=Temperature Annual Range (BIO5-BIO6) 9.8 10.9

Cbio08=Mean Temperature of Wettest Quarter 5.1 6.2

Cbio09=Mean Temperature of Driest Quarter 13.7 –

Cbio10=Mean Temperature of Warmest Quarter – 5.3

Cbio11=Mean Temperature of Coldest Quarter 4.8 10.9

Cbio12=Annual Precipitation 20.4 0.9

Cbio13=Precipitation of Wettest Month 14.8 25.1

Cbio16=Precipitation of Wettest Quarter 4 2.8

Cbio17=Precipitation of Driest Quarter – 7.8

1Variables not selected in the random forest option in the Multi-
Model Framework (MMF), although theywere included in the initial
data set used for modeling. The variables selected by the random
forest procedure were used in both the MaxEnt and MMF models
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pseudo-absence points. MMF generates a set of pseudo-
absence points by one-class support vector machines
(OCSVMs). Instead of selecting a single best-
performing OCSVM, an ensemble of 100 models fitted
to different samples of the data was selected based on
the lowest prediction errors in thousands of runs.
Because this procedure resulted in many possible ab-
sence locations, the generated absence locations with
similar environmental characteristics were clustered by
K-means clustering, resulting in K clusters equal to the
number of presence locations. For each cluster, the
geographical location with environmental conditions
closest to the cluster centroid was selected as the ab-
sence point for that cluster. The generated absence lo-
cations had a zero-probability of environmental suitabil-
ity in all 100 models.

The same environmental variables which were se-
lected by the random forest method mentioned above
were used inMMF. The 10 and 11 selected variables for
ACP and HLB, respectively, were used in each of the
nine models in MMF. Model validation was carried out
by bootstrapping (re-sampling data) and 10-fold cross-
validation (Senay et al. 2013). At the end, the MMF
models were evaluated using ten different performance
criteria which increased the ability to assess the robust-
ness of the model. These performance criteria included:
Accuracy, AUC, F-score, Kappa, precision, recall (sen-
sitivity), specificity, True Skill statistic (TSS), uncertain-
ty and a 0.632 error (Table S3). The models were ranked
based on all 10 performance criteria and the model with
the highest rank in both validation methods
(bootstrapping and cross-validation) was selected as
the best model. Model predictions were plotted globally.
Also, the output maps were generated in ASCII format
that were exported into ArcMap 10.1 software.

Principal component analysis

A principal component analysis (PCA) was performed
to visualize the degree of climatic similarity of global
presence locations to Florida and California climate
data. The same 19 bioclimatic data for global presence
locations as initially used for the modeling were extract-
ed in ArcGIS Desktop 10.1. Data then were transferred
to R version 3.2.1 and were analyzed using the
Bprincomp^ command. The results of PCA were trans-
ferred back into ArcGIS and the actual presence points
were marked with a different color to distinguish them
from the Florida and California locations.

Model consensus

To identify hot spots where HLB and ACP might estab-
lish, the global probabilities of HLB and ACP establish-
ment derived fromMaxEnt andMMFwere converted to
binary data in ArcGIS 10.1 using a threshold of 10
percentile presence in the training data set in MaxEnt
(Jarnevich and Reynolds 2011) and using a threshold of
0.5 in MMF (Gallien et al. 2012). Maps of the binary
data of the four data sets (ACP-MaxEnt, ACP-MMF,
HLB-MaxEnt, and HLB-MMF) were overlaid using
‘equal to frequency’ in ‘spatial analysis tools’ to identify
the areas where one, both or neither of the models
agreed on the habitat suitability for both species.

Results

HLB model performance, effect of environmental
variables, and potential distribution

Model performance The MaxEnt model fitted the cur-
rent distribution of HLB reasonably well. The AUC
value was 0.69, which indicates an acceptable model
(Peterson 2011). In MMF, ten different performance
criteria were calculated for each of the nine models.
The model with the highest performance for a particular
criterion was given a score of 1 and the model with the
lowest performance was given a score of 9 for that
criterion (Table S3). The overall performance was cal-
culated as the sum of the scores for all criteria. Among
the nine models compared in the MMF, the Support
Vector Machine (SVM) was ranked the best model
based on all performance criteria. For example, the
AUC of the SVM model was highest (0.969) according
to both validation methods (bootstrap and cross-
validation) followed by the NNET (Neural Network)
and KNN (K-nearest Neighbor) models.

Environmental variables Eleven variables were select-
ed as informative variables for the HLB model by the
random forest method. The MaxEnt model calculated
the percentage contribution of each of these variables to
the final model prediction (Table 1). Variable bio12
(annual precipitation) had the highest contribution to
the prediction of MaxEnt followed by bio 6 (minimum
temperature of the coldest month) and bio13 (precipita-
tion of wettest month) (Table 1). According to the jack-
knife test the variable that had the highest training gain
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when used alone was bio09 (mean temperature of the
driest quarter). The jackknife charts also showed that the
model gain decreased when variable bio08 (mean tem-
perature of wettest quarter) was omitted, implying that
this variable had the most information that was not
present in other variables (Fig S1). According to the
bio13 response curve the probability of HLB occurrence
would be very low when precipitation in the wettest
month would be less than 150 mm/month (Fig. 2a), a
relatively high threshold. At a higher precipitation, the
HLB presence probability would continue to increase
(with some variability). Similarly, the response curve for
bio12 (annual precipitation) indicated that at least
1200 mm per year would be conducive for the develop-
ment of HLB caused by CLas (Fig. S2). The response
curve of bio09 (mean temperature of driest quarter)
indicated that CLas could survive in locations where
the mean temperature of the dry season was between
15 to 35 °C but that the probability of CLas occurrence
decreased rapidly above 20 °C (Fig. 2b). The response
curve of the mean temperature of the wettest quarter
(bio08) showed that CLas can tolerate a wider range of
temperatures (15–35 °C) in the wet season (Fig. 2c).

Potential HLB (CLas) distribution The SVM model
generally predicted higher suitability, and globally larg-
er suitable areas compared to the MaxEnt model for
HLB establishment. The USA data were not used ini-
tially in training or calibration of the models and there-
fore provided independent data for validation. Both the
MaxEnt and SVM models predicted that Florida, the
southern parts of Louisiana, Georgia, Texas and South
Carolina had a highly suitable climate for CLas estab-
lishment (Fig. 3a). In addition, SVM predicted that parts
of North Carolina and Arizona would be suitable for
CLas establishment, although no commercial citrus is
grown there. The probability of CLas establishment in
California was predicted to be lower than that in the
Gulf Coast states according to both models (Fig. 3a, b).
In areas around San Diego and Los Angeles the proba-
bility of HLB occurrence was higher than at other loca-
tions in that state (Fig. 3a, b and Fig. S3a, b).WhenUSA
data, including findings in California, were added to the
global data set, the predictions for CLas establishment
did not change (data not shown). The models also
predicted a high chance ofCLas establishment in coastal
areas of northern and eastern Australia (Fig. 3a). Both
models predicted that central and eastern parts of Africa
would also be environmentally suitable for the Asian

form of HLB (Fig. 3a, b). According to MaxEnt, the
probability of long–term establishment of CLas was
lower in East than in Central and West Africa
(Fig. 3a), while citrus growing areas in eastern Africa
would be highly suitable according to the SVM model
(Fig. 3b). In addition, Mediterranean countries in North
Africa and southern Europe (especially southern
Portugal and to some extent Spain) were predicted as
highly suitable (Fig. 3b). Overall, the SVM model pre-
dicted higher suitability in most areas compared to
MaxEnt and may over-predict potential HLB (CLas)
occurrence in some areas such as inland areas of West
Africa and central South America where it may be too
dry for ACP survival (Fig. 3b).

ACP model performance, effect of environmental
variables, and potential distribution

Model performance Compared to the MaxEnt model
for HLB, the model for ACP had a slightly better
AUC (0.72). Among the nine models tested in the
MMF, SVM achieved the highest rank. For example,
the AUC of the SVM model for ACP was 0.968, which
suggests very good model performance (Table S3).

Environmental variables Ten variables were selected
as informative variables by the random forest method
in MMF (Table 1). For ACP, bio06 (minimum tem-
perature of the coldest month), bio13 (precipitation of
wettest month) and bio11 (mean temperature of the
coldest quarter) contributed the most to the final
model (Table 1). The jackknife test for the training
gain also indicated that variable bio06 (minimum
temperature of the coldest month) was the variable
with the most important information by itself
(Fig. S4). The response curve of bio13 (precipitation
in the wettest month) was similar to that for HLB. The
probability of ACP occurrence increased dramatically
above 150 mm/month, and continued to increase at
higher precipitation levels (Fig. 2d). The response
curve of variable bio06 showed that the probability
of ACP occurrence started to increase when the min-
imum temperature of the coldest month exceeded
4 °C and reached a maximum at 17–18 °C (Fig. 2e).
The jackknife test showed that the model gain de-
creased noticeably when variable bio07 (temperature
annual range) was omitted from the model (Fig S3).
The response curve of bio07 (temperature annual
range) indicated that when the temperature annual
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range exceeded 25 °C, the probability of ACP occur-
rence started to decline substantially (Fig. 2f).

Potential ACP distribution Similar to HLB, the areas
predicted to be suitable for ACP were more extensive
using the SVM model than using MaxEnt (Fig. 4a, b).
Although the USA data were not used in model training

and testing, MaxEnt predicted Florida as highly suitable
for ACP establishment with lower probabilities in south-
ern parts of Louisiana, Georgia, Texas, and South
Carolina. Besides these states, SVM predicted that
North Carolina would also be climatically suitable, al-
though citrus is not grown commercially there. Similar
to the prediction for HLB, both MaxEnt and SVM

Fig. 2 Response curves of the variables contributing most to the
predictions by the MaxEnt models for HLB (a–c) and ACP (d–f):
precipitation in the wettest month (a), mean temperature of driest
quarter (b), mean temperature of wettest quarter (c), precipitation

in the wettest month (d), minimum temperature of coldest month
(e), and temperature annual range (f). X axes values are in mm/
month (a, d) and in °C multiplied by 10 as provided by the
Worldclim website (b, c,e, f)
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predicted that a relatively small area in southern
California, especially along the coast, was highly suit-
able for ACP establishment, while the Central Valley
was predicted to be moderately suitable, when the USA
data were omitted for calibration (Fig. 4a, b and
Fig. S5). The predicted areas were therefore mostly in
accordance with the distribution of ACP in the USA.
When the USA data were included, both models pre-
dicted more suitable areas in California, including more
inland areas like the Central Valley (Figs. S6 and S7)
although the ACP numbers per unit area were still very
low in California compared to Florida.

Both models predicted that northern and eastern
Australia would be highly suitable. Coastal areas in
southern and western Australia were predicted as highly
suitable by SVM only. The northern part of the North
Island of New Zealand was predicted to be suitable by
both models, whereas SVM predicted that the southern
regions of the North Island would also be highly suit-
able. Although MaxEnt predicted very low probability
for ACP establishment in South of Korea where this
psyllid does not occur, this area was modeled as

unsuitable by SVM. Both models also predicted that
the lowlands in central and eastern Africa would be
highly suitable for ACP (Fig. 4). In central and west
Africa, very large areas were predicted highly suitable
for the psyllid. In addition, coastal areas in northern
Africa were estimated to be highly suitable. In Europe,
Italy, Portugal and part of Spain had a high probability
of ACP establishment based on SVM predictions.

Validation of Florida and California predictions by PCA
analysis

The results of PCA analysis for CLas and ACP
(Fig. 5a, b) showed that for both species, the Florida
climate data points were environmentally very similar
to those of the worldwide presence points (excluding
the USA), while the California climate data points
were distinct from the Florida points and most of the
global presence point (again excluding the USA).
However, the climate data of relatively few locations
in California were similar to those of some of the
global presence points.

Fig. 3 Global potential distribution of citrus huanglongbing, HLB, caused by CLas by MaxEnt (a) and the Support Vector Machine,
SVM (b) models
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Consensus model for HLB and ACP

The consensus model categorized the areas where
both models agreed on the suitability of the climate
for both CLas and ACP (hot spots), contrasted with
areas where only one model predicted suitable cli-
mate for both species and areas where there was no
agreement (Fig. 6). The areas where both models
predicted high probability of both species occurrence
were in agreement with observed occurrences of
HLB. In addition, CLas and ACP establishment were
predicted for northern and eastern Australia and cen-
tral and southeastern Africa, where these species have
not been detected.

Discussion

Model comparison

Prediction models can be useful for risk assessment
of bio-security threats (da Graca and Korsten 2004).

The current study is the first to address the global
potential risk of HLB and ACP establishment in
citrus plantings throughout the world using two dif-
ferent correlative modeling approaches. As expected,
both models provided a good fit to the current distri-
bution of HLB and ACP worldwide. Additionally,
both models predicted well the current occurrences
of the target species in the USA that had been left out
of the training data set. When the USA data were
included, the predictions for ACP from both models
changed for California and the Mediterranean area
(Figs. S6 and S7), but the CLas predictions remained
essentially the same.

Although both models showed a similar pattern
regarding climatic suitability of the two modelled
species at the global scale, MaxEnt predicted a more
narrow distribution compared to the SVM model se-
lected from the MMF. This is in agreement with the
expectation that presence-only models have a lower
ability to predict invasion in a new area compared
to presence-pseudo-absence models (Townsend
Peterson et al. 2007).

Fig. 4 Global potential distribution of the Asian Citrus Psyllid, ACP, by MaxEnt (a) and the Support Vector Machine, SVM (b) models
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Global prediction of HLB and ACP

Both models predicted suitable areas in regions where
HLB and/or ACP have not been reported so far. For
example, both predicted that Northeast Australia could
be highly suitable for HLB andACP establishment. This

result has also been predicted with a previous simulation
model (Aurambout et al. 2009). ACP was reported from
Australia in 1922, but it was quickly eradicated and has
not been reported since then (Bellis et al. 2005).
Considering that ACP and HLB have been reported in
most parts of the Asia-Pacific region, the current

Fig. 5 Principal component analysis showing climate similarity
of the presence points of huanglongbing (HLB) caused by CLas
and the Asian Citrus Psyllid (ACP) to Florida (yellow) and

California (green) climate data obtained from the Worldclim
website (www.worldclim.org)

Fig. 6 Consensus model showing the hot spot areas where one or two models (MaxEnt and SVM) agree on the probability of both citrus
huanglongbing (HLB) caused by CLas and the Asian Citrus Psyllid (ACP) occurrence
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absence of these species in Australia may indicate the
important role that effective bio-security measures can
play in prevention and control of pest species.

The models also predicted that vast areas in Africa
were highly suitable climatologically for CLas and ACP
establishment. Only the African form of HLB has been
reported in Africa so far, except for a recent report of the
Asian form of HLB (caused by CLas) from Tigray in
Ethiopia (Bove 2014). According to both models, the
chance of CLas and ACP establishment is high in East
and West Africa where citrus trees are grown. Thus, in
the absence of effective preventive measures, CLas may
establish in Africa if it is not outcompeted by CLaf.

For the USA, bothmodels predicted Florida as highly
suitable for HLB (CLas) and ACP establishment even
though the USA data were not used in model training.
Both models also predicted the suitability for ACP and
CLas in areas of Texas where ACP and CLas have been
reported recently (da Graca et al. 2008). Similar to the
predictions by Gutierrez and Ponti (2013), areas sur-
rounding the Gulf of Mexico were predicted to be quite
conducive. Both of our original models (without USA
occurrence data) predicted a high probability of ACP
and CLas establishment in the coastal areas of
California, especially around Los Angeles, but a low
probability in the Central Valley, whereas Gutierrez and
Ponti (2013) predicted a moderate probability for ACP
and HLB establishment throughout California. Similar
to the predictions, there were several reports of HLB
(CLas) from Los Angeles in 2012 and 2015, which were
followed by immediate eradication of the infected trees
(Kumagai et al. 2014). ACP has been reported for many
counties in California, including the Central Valley,
since 2008 (Kumagai et al. 2014). When the USA
occurrence data were included in the global data set,
the positive ACP predictions for California extended to
the Central Valley, as could be expected from correlative
models (Fig. S7).

Our original results from the global data without the
USA data were supported by the PCA analysis, showing
that the California climatic conditions were mostly dis-
tinct from those of current ACP infested areas world-
wide, except for some points around Los Angeles and
other locations close to the coast. Although ACP now
occurs in 16 counties in California (http://www.cdfa.ca.
gov/plant/pe/InteriorExclusion/acp_quarantine.
html#maps), the populations of psyllids are very low
there compared to Florida, except in Los Angeles
county (Grafton-Cardwell et al. 2014). The low ACP

densities and current absence of HLB in most of
California suggest that the climate may be only moder-
ately conducive for ACP and CLas in addition to the
possible effectiveness of control measures. HLB control
measures (Martinez-Corrillo et al. 2015) were apparent-
ly effective in northern Mexico (Sonora) where there is
no official report of HLB, even though ACP has been
present since 2006. According to our model predictions,
HLB (CLas) could establish in this region, as well as in
the coastal areas of Western and Northeastern Mexico.
These same areas were also predicted as suitable for
ACP establishment by Torres-Pacheco et al. (2013),
who developed indices for climate suitability for citrus
growth and ACP development based on temperature
and rainfall data in Mexico. Another important factor
may be the prevention of infected plant material being
transported into this area (Halbert et al. 2010). However,
HLB symptoms could also have been overlooked
(http://www.usda.gov/wps/portal/usda/usdahome?
contentidonly=true&contentid=citrus-quarantine-maps.
xml).

Unlike the positive predictions for certain areas in
Australia, Africa and the USA, the southern parts of
South Korea were predicted to be environmentally un-
suitable for both Clas and ACP establishment, possibly
due to the relatively low temperatures and the isolated
position of the island where citrus is mainly produced.
This is in agreement with the current absence of these
species in South Korea, despite the presence of HLB
and ACP in neighboring countries such as Japan and
China.

The consensus model showed that central and south-
eastern Africa, north and eastern Australia, southern
China, India, most parts of South America, Florida,
Georgia, North and South Carolina, Texas, Louisiana,
and small coastal areas in California were potential hot
spots of CLas and ACP (Fig. 6 and Fig. S8). This last
finding is in agreement with a recent increase of ACP
densities in the Los Angeles area (Pers. Comm. with
Elizabeth Grafton-Caldwell). Model consensus, espe-
cially when it includes the vector habitat suitability,
can increase awareness of the areas which should be
more intensively monitored.

Environmental variables

The most distinguishing features of climates that are or
are not suitable for HLB (CLas) and ACP establishment
are low annual precipitation and precipitation in the
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wettest month. The total annual rainfall needs to be
above 700 mm for ACP and 1200 mm for HLB to be
suitable for establishment of the disease (Fig. S2). This
is a relatively high rainfall requirement which may not
be met in semi-arid environments like the Southern
Central Valley of California with an Interior
Mediterranean climate, characterized by hot and dry
summers that could potentially reduce the chance of
ACP establishment (Razi et al. 2014). This area has an
annual precipitation of 125–150 mm (http://frap.cdf.ca.
gov/webdata/maps/statewide/rainmap.pdf/), and CLas
has not yet been found there. Similarly, CLas has not
been detected in central Southern California, although
ACP has been found there repeatedly, possibly because
irrigation may compensate for low rainfall. However,
the models do not account for the potential effect of
irrigation in areas like the Central and Imperial Valleys
of California, because the global distribution of the
amount of irrigation water is not known. Irrigation
may alleviate dry conditions, increase the relative
humidity and number of flush events, and allow ACP
and HLB establishment in some semi-arid climates,
where the models indicate low probability of ACP and
HLB presence. Consequently the model results for such
areas should be interpreted carefully because it is diffi-
cult to determine to which extent the irrigation may
compensate for precipitation. This highlights a critical
knowledge gap and need for conducting studies to eval-
uate how ACP and HLB behave in relatively dry irri-
gated areas.

When the models were tested with all presence data
including those in California, only the suitability for
ACP was extended into the Central Valley (Fig. S7).
To date, the density of ACP is very low in California
(mostly less than 20 psyllids per km2, with slightly
higher densities in the Los Angeles area). Thus, it is
not clear if the Interior Mediterranean climate is condu-
cive for ACP establishment or if the low ACP popula-
tions are mainly related to human-assisted activities.

Above the monthly and annual rainfall thresholds,
higher rainfall continues to promote ACP and HLB
development, despite the potential wash-off of psyllid
nymphs from flush; there appears to be no upper limit
(Fig. 2a, d; Fig. S2). Rainfall is often preceded by high
wind speeds, which may promote high-altitude and
long-distance ACP dispersal, followed by settling out
in subsequent rain. However, the positive relationship
with rain may be primarily due to indirect effects via the
host, including the appearance of new flush (Chiyaka

et al. 2012). In humid and warm climates, citrus trees
produce flush throughout the year (Torres-Pacheco et al.
2013). The number of days suitable for new flush de-
velopment as determined by temperature and rainfall
has proved to be an important index determining the
ACP distribution in Mexico (Liu and Tsai 2000; Torres-
Pacheco et al. 2013).

In addition to rainfall, the minimum temperature
in the coldest month as well as the annual tempera-
ture range contributed to climate suitability for ACP
(Fig. 2d, e). Large annual temperature ranges are
encountered in (semi-)arid climates and high altitude
areas. A minimum temperature below about 4 °C in
winter and an annual average temperature range
larger than 27 °C are not conducive for ACP surviv-
al, especially in dry seasons. Winter temperatures
above 8 °C are more or less uniformly conducive
for ACP development. In the winter (in climates with
distinct seasons), there is generally no flush and
temperatures may be limiting for adult ACP survival.
In flushing periods, temperatures are mostly moder-
ate, so that egg production may not be limited; tem-
peratures during these periods were not selected by
MaxEnt as factors determining ACP presence. In the
warmest season however, a mean temperature of
33 °C limits ACP presence (data not shown), indi-
cating that eggs and young nymphs are sensitive to
high temperatures and desiccation (Liu and Tsai
2000). Earlier reports mention lower and upper
thresholds for ACP development of 10 and 33 °C,
which may depend on the location where ACP was
collected (Liu and Tsai 2000; Torres-Pacheco et al.
2013). At the high end of this temperature range,
oviposition is stimulated and the generation time is
reduced compared to the lower end (Aurambout et al.
2009; Liu and Tsai 2000).

Optimal and limiting temperature conditions for
HLB symptoms are dependent on rainfall. In the driest
quarter the probability of HLB (CLas) presence declines
above 20 °C (but not to zero), while in the wettest
quarter, the probability of CLas establishment increases
sharply above 15 °C up to 25 °C and declines only
slightly up to almost 40 °C. The sensitivity to high
temperatures in the driest quarter indicates that the com-
bination of dryness and high temperatures forms a stress
factor either on the pathogen itself or on its vector (Razi
et al. 2014). It is well-known that the impact of the Asian
form of HLB is most severe in warm and wet climates
(Bove 2014). The temperature sensitivity under dry
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conditions opens perspectives for HLB control by heat
treatment in the dry season (Hoffman et al. 2012).

Caveats

To interpret any habitat model output, the inherent un-
certainties involved should be well considered and one
should exercise caution. Firstly, bioclimatic models as-
sume that a species is in equilibrium with its environ-
ment (they have fully filled their environmental niche)
and they may fail to correctly project the distribution of
a species that is on the move, invading a new area or
more particularly a species that experiences a range shift
in response to climate change (Vaclavik and
Meentemeyer 2009). Secondly, the resolution of envi-
ronmental data, the quality of occurrence records, and
spatial autocorrelation should be taken into account
(Franklin 2013). The combination of several models like
MaxEnt and the MMF can give more confidence in the
results, especially when they coincide so that a consen-
sus model can provide realistic predictions (Narouei
Khandan 2014; Narouei Khandan et al. 2013).

Thirdly, if a global map of citrus production would
become available, the generation and selection of
pseudo - absence points could be different, the predic-
tions of HLB and ACP could be overlaid with presence
of citrus trees and the prediction could be improved.
Nevertheless, the current predictions may be useful if
citrus were to be planted in the future. Finally, models
may predict potential suitability for an area where the
pathogen is not (yet) present, for example as a result of
quarantine measures or the absence of large citrus pro-
duction areas. Despite these caveats, predictions using
the best possible models can be useful and are better
than no science-based predictions at all.
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