Title:
Improved methods for genome sequencing of Liberibacters by BAC library-based metagenomics approach

Journal Issue:
Journal of Citrus Pathology, 1(1)

Author:
Keremane, Manjunath L., USDA ARS, National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA, USA, 92507
Ramadugu, Chandrika, Dept. of Botany and Plant Sciences, University of California, Riverside, CA, USA 92511
Duan, Yongping, US Horticultural Research Laboratory, Fort Pierce, FL, USA 34945
Zhou, Lijuan, US Horticultural Research Laboratory, Fort Pierce, FL, USA 34945
Kund, Greg, Dept. of Entomology, University of California, Riverside, CA, USA 92511
Trumble, John, Dept. of Entomology, University of California, Riverside, CA, USA 92511
Lee, Richard, USDA ARS, National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA, USA, 92507

Publication Date:
2014

Permalink:
https://escholarship.org/uc/item/66f7q63z

Local Identifier:
iocv_journalscitruspathology_25215

Abstract:
Liberibacters have not yet been successfully cultured; their minimal genomes carry multiple copies of several genes. Sequences identical to phage genomes have been found in many Liberibacters. Available evidences suggest that the Liberibacter genomes are adapting rapidly in different hosts and environments. Characterization of genomes of rapidly changing unculturable organisms can be challenging. We have used a model system based on Candidatus Liberibacter psyllaurous associated with tomato “psyllid yellows” (Hansen et al., 2008) to develop methodologies using alternate techniques for sequencing metagenomes. We have constructed a BAC library from infected tomato psyllids (Bactericera cockerelli). The library consists of 57,600 clones arrayed in 150 plates each with 384 wells. DNA from individual clones were pooled for screening purposes. Initial identification of clones with Liberibacter sequences were conducted based on 16s ribosomal sequences, and contiguous clones were characterized by end sequencing and identified as containing Liberibacter genome fragments. Screening of additional clones from the library was based on probes developed on such sequences. A total of 245 clones with Liberibacter genome fragments have been identified. A total of 63 bar-coded BAC clones were sequenced by using Roche 454 technology. BAC clones from this library contain large inserts (average size 70 kb).
Similarities and differences with other well characterized genomes of Liberibacters (Duan et al., 2009, Lin et al., 2011) will be presented.

Copyright Information:

Copyright 2014 by the article author(s). This work is made available under the terms of the Creative Commons Attribution 4.0 license, http://creativecommons.org/licenses/by/4.0/
9.10 P

**Improved methods for genome sequencing of Liberibacters by BAC library-based metagenomics approach**

Keremane, M.L.\(^1\), Ramadugu, C.\(^2\), Duan, Y.\(^4\), Zhou, L.\(^4\), Kund, G.\(^3\), Trumble, J.\(^3\), and Lee, R.\(^1\)

\(^1\)USDA ARS, National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA, USA, 92507
\(^2\)Dept. of Botany and Plant Sciences and \(^3\)Dept. of Entomology, University of California, Riverside, CA, USA 92511
\(^4\)US Horticultural Research Laboratory, Fort Pierce, FL, USA 34945

Liberibacters have not yet been successfully cultured; their minimal genomes carry multiple copies of several genes. Sequences identical to phage genomes have been found in many Liberibacters. Available evidences suggest that the Liberibacter genomes are adapting rapidly in different hosts and environments. Characterization of genomes of rapidly changing unculturable organisms can be challenging. We have used a model system based on *Candidatus* Liberibacter psyllaurous associated with tomato “psyllid yellows” (Hansen et al., 2008) to develop methodologies using alternate techniques for sequencing metagenomes. We have constructed a BAC library from infected tomato psyllids (*Bactericera cockerelli*). The library consists of 57,600 clones arrayed in 150 plates each with 384 wells. DNA from individual clones were pooled for screening purposes. Initial identification of clones with Liberibacter sequences were conducted based on 16s ribosomal sequences, and contiguous clones were characterized by end sequencing and identified as containing Liberibacter genome fragments. Screening of additional clones from the library was based on probes developed on such sequences. A total of 245 clones with Liberibacter genome fragments have been identified. A total of 63 bar-coded BAC clones were sequenced by using Roche 454 technology. BAC clones from this library contain large inserts (average size 70 kb). Similarities and differences with other well characterized genomes of Liberibacters (Duan et al., 2009, Lin et al., 2011) will be presented.

References

