1	Running head: Alteration of Pi starvation responses by SAP11
2	Address correspondence to:
3	Jun-Yi Yang
4	Institute of Biochemistry, National ChungHsing University, 250 Kuokuang Road
5	Taichung 40227, Taiwan
6	886-4-22840468 ext 232
7	jyang@nchu.edu.tw
8	
9	Research area: Signaling and Response
10	

Yen-Ting Lu/Page 1/Plant Physiology

34	
35	Financial source: This work was supported by the National Science Council (NSC
36	100-2321-B-005-007-MY3, NSC 101-2911-I-005-301 and NSC 102-2911-I-005-301) and
37	Ministry of Education (ATU plan), Taiwan.
38	
39	Corresponding author: Jun-Yi Yang, jyang@nchu.edu.tw
40	

ABSTRACT

Phytoplasmas have the smallest genome among bacteria and lack many essential genes
required for biosynthetic and metabolic functions, making them unculturable, phloem-limited
plant pathogens. In this study, we observed that transgenic Arabidopsis thaliana expressing
the secreted effector protein $SAP11_{AYWB}$ of the Aster Yellows phytoplasma strain Witches'
Broom (AY-WB) shows an altered root architecture, similarly to the disease symptoms of
phytoplasma-infected plants, by forming hairy roots. This morphological change is paralleled
by an accumulation of cellular Pi and an increase in the expression levels of Pi
starvation-induced genes and miRNAs. In addition to the Pi starvation responses, we found
that SAP11 _{AYWB} suppresses salicylic acid-mediated defense responses and enhances the
growth of a bacterial pathogen. These results contribute to an improved understanding of the
role of phytoplasma effector SAP11 and provide new insights for understanding the
molecular basis of plant-pathogen interactions.

Yen-Ting Lu/Page 4/Plant Physiology

INTRODUCTION

Nutrients are essential for the growth of both host cells and pathogens. Host cells obtain
nutrients for their own metabolism, but they also provide a favorable environment for
pathogens to exploit. To defend against the growth of pathogens, host cells can develop a
strategy to sequester key nutrients from the pathogens (Radtke and O'Riordan, 2006; Hood
and Skaar, 2012). However, nutritional deficiencies also impair immune responses and alter
the host susceptibility to pathogens. In general, successful pathogens have evolved various
ways of manipulating host nutrition by modulating the uptake and utilization of nutrients in
order to satisfy their requirements. Global transcriptome analysis has been shown that
intracellular bacteria, such as Listeria monocytogenes, can upregulate genes required for
nutritional stresses in mammalian cells (Chatterjee et al., 2006). In the case of Xanthomonas
oryzae, the transcriptional activator-like type III effector pthXol can activate the expression
of OsSWEET11 in controlling cellular sugar efflux (Chen et al., 2010). Thus, it is not
surprising that nutritional immunity is a complex process, and nutrition is an important factor
in regulating the interaction between a host and a pathogen.
Recently, a study on huanglongbing disease through small RNA profiling analysis revealed
that the infection of Candidatus Liberibacter, an intracellular bacterial pathogen, specifically
induced miR399 in citrus plants (Zhao et al., 2013). MiR399 is induced by phosphate (Pi)
starvation and has the ability to regulate the homeostasis of Pi by repressing the expression of
PHOSPHATE 2 (PHO2) (Aung et al., 2006; Chiou et al., 2006). PHO2 encodes a ubiquitin
E2 enzyme required for the degradation of PHT1 Pi transporters and PHOSHATE1 (PHO1)
involved in Pi uptake and translocation Pi starvation signaling (Liu et al., 2012; Huang et al.,
2013). The Pi deficiency symptom associated with huanglongbing disease implies that the
availability of Pi is an important factor for the disease development caused by Candidatus

81	Liberibacter. Indeed, the application of Pi reduces the disease symptoms of huanglongbing
82	(Zhao et al., 2013).
83	Pi is required for the synthesis of nucleic acids and phospholipids, and it also plays an
84	important function in energy metabolism and signaling transduction (Shen et al., 2011).
85	Although Pi is an essential nutrient for plant growth and development, the amount of
86	available Pi in the soil is limited (Raghothama, 1999; Jain et al., 2012). As a result, plants
87	have evolved a way to improve their Pi acquisition by forming mutualistic symbiosis with
88	arbuscular mycorrhizal (AM) fungi (Bucher et al., 2009; Ohkama-Ohtsu and Wasaki, 2010).
89	Colonization by AM fungi can modify the plants' root architecture and enhance the uptake of
90	mineral nutrients, in particular Pi (Gu et al., 2011; Volpe et al., 2013). Interestingly, several
91	studies also reported that AM fungi reduce the disease symptoms caused by phytoplasmas
92	(Lingua et al., 2002; Romanazzi et al., 2009; Kamińska et al., 2010; Sampò et al., 2012).
93	Similar to Candidatus Liberibacter, phytoplasmas are intracellular bacterial pathogens and
94	depend on sap-feeding insects for transmission (Lee et al., 2000). Phytoplasmas cause various
95	disease symptoms, including witches' broom, phyllody, virescence, bunchy roots, and
96	stunting and yellowing of plants (Hogenhout et al., 2008). Owing to the significant reduction
97	in the genome of phytoplasmas, they cannot be cultured in vitro and are restricted to phloem
98	sieve cells with a rich growth environment (Oshima et al., 2004; Bai et al., 2006). Although
99	phytoplasmas depend on their plant host for survival, they are able to manipulate the plant's
100	physiology through their secreted effectors (Sugio et al., 2011a).
101	Recent studies have shown that the protein 11 (SAP11 _{AYWB}) secreted by the Aster Yellows
102	phytoplasma strain Witches' Broom (AY-WB) contains a nuclear localization signal (NLS)
103	for nuclear-targeting outside phloem cells (Bai et al., 2008). Arabidopsis plants that
104	overexpress SAP11 _{AYWB} display crinkled leaves that resemble transgenic plants
105	overexpressing miR319 (Sugio et al., 2011b). MiR319 has been shown to target transcripts of
	Yen-Ting Lu/Page 6/Plant Physiology

106	TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) genes,
107	which are involved in the control of cell proliferation in leaf morphogenesis and the
108	biosynthesis of jasmonate (JA) (Ori et al., 2007; Schommer et al., 2008). Although
109	SAP11 _{AYWB} has not been shown to interfere with miRNA expression, it has been reported that
110	it can destabilize TCP transcription factors through direct interaction (Sugio et al., 2011b).
111	Because TCPs can directly regulate the expression of LIPOXGENASE 2 (LOX2), a key
112	component in the biosynthesis of JA, destabilization of TCPs leads to a decrease in JA
113	(Schommer et al., 2008). In agreement with the findings that JA plays an important role in
114	defense responses against insect herbivores, impairment of JA biosynthesis in
115	SAP11 _{AYWB} -overexpressing plants leads to an increase in the progeny of <i>Macrosteles</i>
116	quadrilineatus (Kessler et al., 2004; Sugio et al., 2011b).
117	In this study, we have shown that the expression of phytoplasma effector $SAP11_{AYWB}$ in
118	Arabidopsis triggers phosphate starvation responses and suppresses plant defense responses
119	against a bacterial pathogen. These findings advance our understanding of the molecular
120	mechanism underlying the disease symptoms elicited by the secreted effectors and provide
121	new insights into the interaction between host plants and phytoplasmas.
122	
123	RESULTS
124	$Expression \ of \ SAP11_{AYWB} \ Alters \ miRNA \ Accumulation \ Involved \ in \ Pi \ Starvation \ and$
125	Auxin Responses in Arabidopsis
126	The phenotypical similarities in the leaf morphologies of SAP11 _{AYWB} -overexpressing
127	plants (35S::SAP11 _{AYWB}) and miR319a-overexpressing (35S::miR319a) plants (Sugio et al.,
128	2011b) prompted us to examine whether the expression of SAP11 _{AYWB} can regulate the
129	accumulation of miRNAs in host cells (Fig. 1A). Expression of SAP11 _{AYWB} was confirmed
130	by using the anti-SAP11 $_{\rm AYWB}$ antibody (Fig. 1B). Then, total RNA was extracted from plants
	Yen-Ting Lu/Page 7/Plant Physiology

131	grown on half-strength Murashige and Skoog (1/2× MS) medium for small RNA northern
132	blotting assays. Here, we compared the accumulation of miR159, miR160, miR164, miR167,
133	miR319, miR399, and miR393 in <i>Arabidopsis</i> wild-type (WT) Col-0 and 35S::SAP11 _{AYWB}
134	transgenic lines. Interestingly, the accumulation of miR319 and miR159, miR164, and
135	miR167 was not affected by the expression of SAP11 _{AYWB} (Fig. 1C). However, a decrease of
136	miR393 and an induction of miR399 and miR160 were detected in 35S::SAP11 _{AYWB}
137	transgenic lines (Fig. 1C). MiR399 plays a key role in regulating Pi starvation responses,
138	whereas miR393 and miR160 are involved in auxin responses. In generally, auxin is
139	regulated upon Pi depletion in order to change root architecture with the aim of increasing Pi
140	uptake (Péret et al., 2011). Thus, auxin has been shown to play an important role in
141	stimulating root architecture during Pi starvation responses (Nacry et al., 2005; Jain et al.,
142	2007; Pérez-Torres et al., 2008). Because miR393 and miR160 are involved in auxin
143	responses, it is possible that those miRNAs have indirect effects on the root architecture
144	alterations required for Pi uptake. Our results suggest that Pi starvation and auxin responses
145	are altered in 35S::SAP11 _{AYWB} transgenic plants.
146	
147	Pi Starvation Responses and Pi Homeostasis Are Altered in SAP11 Transgenic
148	Arabidopsis Plants
149	To investigate whether Pi starvation responses have been altered in 35S::SAP11 _{AYWB}
150	transgenic plants, the expression levels of Pi starvation-induced genes were examined using
151	quantitative RT-PCR (qRT-PCR). RNA samples were extracted from seedlings grown in $1/2 \times$
152	MS (Pi-sufficient) medium, and typical Pi starvation-induced genes such as INDUCED BY
153	PHOSPHATE STARVATION 1 (IPS1), IPS2, SPX DOMAIN GENE 1 (SPX1), SPX3,
154	PHOSPHATE STARVATION-INDUCED GENE 2 (PS2), PS3, and PHOSPHATE
155	TRANSPORTER 1;4 (PHT1;4) were examined. IPS1, IPS2, SPX1, SPX3, PS2, PS3, and

Yen-Ting Lu/Page 8/Plant Physiology

PHT1;4 were all elicited in 35S::SAP11_{AYWB} transgenic plants, in comparison with WT plants (Fig. 2A). To examine the levels of cellular Pi, Arabidopsis seedlings grown in hydroponic solution were collected. A higher amount of Pi was detected in the aerial parts of 35S::SAP11_{AYWB} transgenic plants grown in 0.01 mM KH₂PO₄ (Pi-deficient) and 0.25 mM KH₂PO₄ (Pi-sufficient) hydroponic solutions than in WT plants (Fig. 2B). These results indicate that Pi starvation responses and Pi homeostasis are altered in 35S::SAP11_{AYWB} transgenic plants.

Expression of $SAP11_{AYWB}$ Reduces the Accumulation of Anthocyanin and Alters the

Root Architecture in Arabidopsis

Pi is a major limiting factor for the growth and development of plants. Thus, plants have evolved a series of morphological and physiological modifications triggered by Pi deficiency, such us an increase in root/shoot ratio, proliferation of lateral roots, and accumulation of anthocyanin (Rouached et al., 2010). To examine the effects of Pi deficiency, variations in the development of 35S::SAP11_{AYWB} transgenic lines grown on 0.01 mM and 0.25 mM KH₂PO₄ medium were compared. As a control, WT plants showed a significant reduction in plant size and displayed red/purple color in leaf when grown on 0.01 mM KH₂PO₄ medium (Fig. 3A). Compared to WT plants, 35S::SAP11_{AYWB} transgenic plants showed a growth-inhibiting phenotype on both 0.01 mM and 0.25 mM KH₂PO₄ media (Fig. 3A). However, the accumulation of anthocyanin was strongly reduced in 35S::SAP11_{AYWB} transgenic plants grown on 0.01 mM KH₂PO₄ medium (Fig. 3B). We further investigated the root architecture of 35S::SAP11_{AYWB} transgenic plants. Compared to WT plants, 35S::SAP11_{AYWB} transgenic plants grown on both 0.01 mM and 0.25 mM KH₂PO₄ media showed a clear inhibition of primary roots, a significant proliferation of adventitious roots, and an elongation of lateral roots (Fig. 3C). Taken together, the molecular alterations associated with the expression of

181	SAP11 _{AYWB} were correlated with the morphological changes observed in the 35S::SAP11 _{AYWB}
182	transgenic plants.
183	
184	Genome-Wide Identification of Differentially Expressed mRNAs Altered by the
185	Expression of SAP11 _{AYWB} in Arabidopsis
186	To examine the genome-wide expression profile of mRNAs in response to the expression
187	of SAP11 _{AYWB} in <i>Arabidopsis</i> , the 35S::SAP11 _{AYWB} transgenic line #13 with higher
188	expression of SAP11 _{AYWB} was selected for a comparative transcriptome analysis (Fig. 4A).
189	Here, total RNA from 35S::SAP11 _{AYWB} transgenic seedlings and WT seedlings grown on 1/2×
190	MS medium were extracted for next-generation sequencing. In summary, a total of 26.2
191	million reads mapped to the Arabidopsis genome were generated after quality trimming from
192	two cDNA libraries (Supplemental Table S1). To identify differentially expressed genes
193	altered by $SAP11_{AYWB}$, the expression levels of mapped genes from two samples were
194	quantified and analyzed using DESeq, a differential gene expression data analysis program
195	(Anders and Huber, 2010). A total of 395 differentially expressed genes ($p \Box 0.01$) were
196	identified in the 35S::SAP11 _{AYWB} transgenic plants. To narrow down the differentially
197	expressed genes, a criterion of $p < 0.001$ was selected, and 163 differentially expressed genes
198	were identified in the 35S::SAP11 _{AYWB} transgenic plants (Supplemental Data S1). Among
199	them, 59 genes were upregulated and 104 genes were downregulated.
200	Functional annotations on the 59 upregulated genes revealed that a total of 18 Pi
201	starvation-induced genes, including MYB DOMAIN PROTEIN 90 (MYB90), IPS1,
202	GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR 2 (GPT2), SULFATE
203	TRANSPORTER 1;3 (SULTR1;3), SPX3, MONOGALACTOSYLDIACYLGLYCEROL
204	SYNTHASE 3 (MGD3), BETA-AMYLASE 5 (BAM5), AT5G09570, PS2,
205	PHOSPHOETHANOLAMINE/PHOSPHOCHOLINE PHOPHATASE 1 (PEPC1),

206	AT5G20790, AT1G23110, IPS2, SPX1, PHOSPHOLIPASE D P2 (PLDP2), PS3,
207	SENESCENCE-RELATED GENE 3 (SRG3), and PURPLE ACID PHOSPHATASE 17
208	(PAP17), were highly elicited by SAP11 _{AYWB} (Table 1). Notably, a total of 7 Pi
209	starvation-induced genes were found in the top 10 list of SAP11 _{AYWB} -elicited genes. Further
210	comparison revealed that more than 20% of the SAP11 $_{\rm AYWB}$ -elicited genes ($p = 0.001$)
211	overlapped with the differentially expressed genes (more than 2-fold upregulation) identified
212	by Muller et al. (2007) and Liu et al. (2011) under Pi starvation conditions (Fig. 4B). In
213	addition to the Pi starvation responses, a small subset of genes involved in sugar metabolic
214	processes and iron-deficiency responses were also elicited by $SAP11_{AYWB}$ (Table 1). To
215	evaluate the quality of the RNA-Seq data, SAP11 _{AYWB} -elicited genes were randomly selected
216	for validation by using the qRT-PCR method. The differentially expressed genes, including
217	GPT2, BAM5, MGD3, PLDP2, SWEET1, MYB90, TPPI, SRG3, CYTOCHROME P450
218	FAMILY 707 SUBFAMILY A POLYPEPTIDE 2 (CYP707A2), and FERRIC REDUCTION
219	OXIDASE 5 (FRO5), were all elevated in the 35S::SAP11 _{AYWB} transgenic plants (Fig. 4C).
220	Taken together, these results indicate that Pi starvation-induced genes are highly upregulated
221	by the expression of SAP11 _{AYWB} in <i>Arabidopsis</i> .
222	
223	Genome-Wide Identification of Differentially Expressed miRNAs Altered by the
224	Expression of SAP11 _{AYWB} in <i>Arabidopsis</i>
225	To investigate the genome-wide expression profile of miRNAs in response to the
226	expression of $SAP11_{AYWB}$ in $Arabidopsis$, RNA samples were collected from seedlings grown
227	on $1/2 \times$ MS medium. Two small RNA libraries from $35S::SAP11_{AYWB}$ transgenic line #13 and
228	WT plants were constructed for deep-sequencing. In summary, a total of 34.5 million reads
229	mapped to the Arabidopsis genome were generated after quality trimming from two cDNA
230	libraries (Supplemental Table S2). Among them, about 9.3 million reads were mapped to
	Yen-Ting Lu/Page 11/Plant Physiology

231	Arabidopsis miRNAs deposited in miRBase (Kozomara and Griffiths-Jones, 2011). The
232	expression levels of known miRNAs in two samples were normalized, and the differentially
233	expressed miRNAs with fold-change >2 or <1/2 were identified (Fig. 5; Supplemental Data
234	S2). Compared to WT plants, 35S::SAP11 _{AYWB} transgenic plants showed significant
235	upregulation of miR160, miR2111, miR394, miR399, miR5639, miR5655, miR827, miR850,
236	and miR863. In contrast, miR172, miR396, miR5020, miR5629, miR5645, and miR5648
237	showed significant downregulation in the 35S::SAP11 _{AYWB} transgenic plants. Among them,
238	miR2111, miR399, and miR827 have been shown to be upregulated by Pi starvation (Hsieh et
239	al., 2009; Pant et al., 2009) and miR399 and miR827 play important roles in regulating Pi
240	homeostasis (Liu et al., 2012; Huang et al., 2013; Lin et al., 2013); miR160 and miR396 are
241	required for regulating the auxin signaling response and cell proliferation during leaf and root
242	development (Gutierrez et al., 2009; Pulido and Laufs, 2010; Debernardi et al., 2012; Bazin
243	et al., 2013); miR172 has been shown to regulate the transition from the vegetative to
244	reproductive phases (Aukerman and Sakai, 2003; Wu et al., 2009); and miR394 is required
245	for the regulation of leaf morphology and shoot meristem stem-cell maintenance (Song et al.,
246	2012; Knauer et al., 2013). However, miR5020b, miR5629, miR5639, miR5645d, miR5648,
247	miR5655, and miR850 are newly identified miRNAs with unknown functions.
248	We further evaluated the results of small RNA sequencing by using small RNA northern
249	blotting. Here, several miRNAs were randomly selected for validation, and the results were
250	consistent with the genome-wide miRNA expression profiling (Fig. 4D). Moreover, we
251	investigated the expression level of PHO2 in 35S::SAP11 _{AYWB} transgenic line #13, because
252	miR399 has been shown to downregulate PHO2 by directly targeting its transcripts (Aung et
253	al., 2006; Chiou et al., 2006). Consistent with the upregulation of miR399, a significant
254	downregulation of <i>PHO2</i> was observed in 35S::SAP11 _{AYWB} transgenic line #13 (Fig. 4E).
255	Taken together, these results indicate that miRNAs involved in Pi-starvation and

Yen-Ting Lu/Page 12/Plant Physiology

auxin-signaling pathways are altered by the expression of SAP11_{AYWB} in *Arabidopsis*.

Role of MiR319a in SAP11_{AYWB}-Triggered Pi Starvation Responses

Although SAP11 _{AYWB} did not interfere with the accumulation of miR319 (Fig. 1C and 4D),
the crinkled leaves that appeared in 35S::SAP11 _{AYWB} transgenic plants resembled those in the
35S::miR319a transgenic plants (Fig. 1A and 6A), which prompted us to examine whether
miR319a has an effect on the SAP11 _{AYWB} -triggered Pi starvation responses. We investigated
the accumulation of miR159, miR164, miR319, miR393, and miR399 in 35S::miR319a
transgenic plants grown on 1/2× MS medium. An increase in the amount of miR159, miR164,
and miR399 was observed with the overexpression of miR319 in Arabidopsis (Fig. 4D).
However, the amount of increase for miR399 was much lower in 35S::miR319a transgenic
plants than in 35S::SAP11 _{AYWB} transgenic line #13. Consistently, the expression levels of Pi
starvation-induced genes were much lower in 35S::miR319a transgenic plants, in comparison
with 35S::SAP11 _{AYWB} transgenic line #13 (Fig. 4C and E). We further investigated whether
miR319a has an effect on the root architecture. Compared to 35S::SAP11 _{AYWB} transgenic line
#13, 35S::miR319a transgenic plants grown on 0.01 mM KH ₂ PO ₄ medium showed no
proliferation of adventitious roots and strong inhibition of primary roots (Fig. 6B). The root
architecture in 35S::miR319a transgenic plants was more similar to that in WT plants (Fig.
6B). Because SAP11 _{AYWB} does not affect miR319 expression levels and the root architecture
of miR319 transgenic plants are more similar to wild type, it is unlikely that miR319 is
involved in the SAP11 _{AYWB} -triggered Pi starvation responses. However, the transcript levels
of Pi starvation-induced genes and miR399 were lightly upregulated in 35S::miR319a
transgenic plants. Therefore, TCP transcripts targeted by miR319 may have minimal
contribution to the phosphate starvation responses.

281	SAP11 _{AYWB} -Triggered Pi Starvation Responses Are Mainly Dependent on <i>PHR1</i>
282	Molecular mechanisms underlying Pi starvation responses remain largely unknown
283	(Rouached et al., 2010). Only a few transcription factors have been identified as important
284	players in the Pi-starvation signaling pathway. Among them, <i>PHOSPHATE STARVATION</i>
285	RESPONSE 1 (PHR1) that encodes a MYB transcription factor plays a key role in responding
286	to the Pi deficiency in Arabidopsis (Rubio et al., 2001). However, there was no significant
287	difference in the transcript level of <i>PHR1</i> between WT and SAP11 _{AYWB} transgenic plants (Fig
288	4E). When we analyzed the potential cis-regulatory elements on the Pi-starvation induced
289	genes regulated by SAP11 _{AYWB} using PlantPAN, a navigator for plant promoter analysis
290	(Chang et al., 2008), we found that 14 out of 18 Pi-starvation induced genes contain PHR1
291	binding sites in their promoter regions (Table 3). Thus, to understand whether the
292	<i>PHR1</i> -dependent pathway contributes to the SAP11 _{AYWB} -triggered Pi starvation responses,
293	35S::SAP11 _{AYWB} was introduced into a <i>phr1</i> mutant. With the expression of SAP11 _{AYWB} ,
294	35S::SAP11 _{AYWB} /phr1 transgenic plants showed a wavy-margin phenotype in the leaves (Fig.
295	7A). However, the Pi starvation-induced genes, including IPS1, IPS2, SPX1, SPX3, PS2, PS3,
296	and PHT1;4, were all suppressed when SAP11 _{AYWB} was expressed under a phr1 mutant
297	background (Fig. 7B). These results indicate that <i>PHR1</i> is required for SAP11 _{AYWB} -triggered
298	Pi starvation responses.
299	
300	$SAP11_{AYWB}$ Transgenic Plants Show Altered Hormone Synthesis and Signaling and Are
301	More Susceptible to the Bacterial Pathogen Pseudomonas Syringae
302	RNA-Seq analysis of the downregulated genes in 35S::SAP11 _{AYWB} #13 transgenic line
303	revealed that a subset of genes, including ELICITOR-ACTIVATED GENE 3-1 (ELI3-1),
304	At3g05730 (defensin-like family protein), PATHOGENESIS-RELATED GENE 1 (PR1), and
305	LOX2, were highly suppressed (Table 2). The RNA-seq data was validated using the

Yen-Ting Lu/Page 14/Plant Physiology

qRT-PCR method (Fig. 8A and B). The downregulation of <i>LOX2</i> is consistent with the
previous studies reported by Sugio et al. (2011b). Interestingly, LOX2 is involved in JA
synthesis, whereas PR1 and ELI3-1 are salicylic acids (SA)-responsive genes (Kiedrowski et
al., 1992; Spoel et al., 2003). These results suggest that SAP11 _{AYWB} not only interferes with
JA synthesis but also suppresses SA-signaling responses. We found that $SAP11_{AYWB}$
repressed the expression of miR393, an Flg22-induced miRNA that participates in basal
resistance against bacterial pathogens (Navarro et al., 2006). Thus, repression of miR393 and
PR1 in 35S::SAP11 _{AYWB} transgenic plants prompted us to investigate whether the expression
of SAP11 $_{\mathrm{AYWB}}$ can suppress innate immunity against bacterial pathogens in $Arabidopsis$. To
this end, we monitored the expression levels of genes involved in the SA-mediated
defense-signaling network under the treatment of 1 mM SA. Genes involved in SA
biosynthesis (EDS5 and SID2), SA accumulation (FMO1, WIN3, and PAD4), as well as the
standard marker genes for SA-mediated response (PR1 and AIG1), were all repressed in
35S::SAP11 _{AYWB} #13 transgenic line (Fig. 8A). We further investigated the effect of
SAP11 _{AYWB} on the multiplication of <i>Pseudomonas syringae</i> pv. <i>tomato</i> strain DC3000 (<i>Pto</i>
DC3000) in Arabidopsis. In this study, we used the 35S::SAP11 _{AYWB} #12 and #29 transgenic
lines for bacterial inoculation assays because the leaves of 35S::SAP11 _{AYWB} #13 were too
crinkled and small for inoculation. Compared with WT plants, both 35S::SAP11 _{AYWB} #12 and
#29 transgenic lines showed an increase in bacterial growth (Fig. 8C). Taken together, these
results indicate that the expression of $SAP11_{AYWB}$ suppresses the host's innate immunity and
makes the plants more susceptible to a bacterial infection.

DISCUSSION

SAP11 $_{AYWB}$ has been shown to mediate the destabilization of *Arabidopsis* TCPs, which leads to the downregulation of *LOX2*, a key component in the biosynthesis of JA (Schommer

Yen-Ting Lu/Page 15/Plant Physiology

et al., 2008; Sugio et al., 2011b). In this study, our RNA-Seq analysis also showed a
significant decrease in LOX2 transcripts in 35S::SAP11 _{AYWB} transgenic plants (Table 2). In
addition, we showed that the expression of miR319 was not changed in the
SAP11 _{AYWB} -overexpressing plants (Fig. 1C and 4D). These data are in agreement with
previous published results showing that SAP11 _{AYWB} degrades TCPs (Sugio et al., 2011b), an
suggest that the $SAP11_{AYWB}$ -mediated suppression of TCPs' activities probably occurs only
through post-translational regulation. In contrast to miR319, a significant increase in the
amount of miR399, miR2111, and miR827, which have been shown to be upregulated by Pi
starvation (Hsieh et al., 2009; Pant et al., 2009), was observed in 35S::SAP11 _{AYWB} transgenic
plants (Fig. 1C; Supplemental Data S2). Among them, miR399 and miR827 play positive
roles in regulating Pi uptake and translocation (Chiou et al., 2006; Liu et al., 2012; Huang et
al., 2013; Lin et al., 2013). Consistent with this, 35S::SAP11 _{AYWB} transgenic plants
accumulated a higher amount of Pi in cells and displayed reduced symptoms in the
Pi-deficient condition, e.g., a lower level of anthocyanin accumulation (Fig. 2B and 3B).
These phenomena were paralleled by an increase in the transcript levels of Pi
starvation-induced genes, e.g., IPS1, IPS2, SPX1, SPX3, PS2, PS3, and PHT1;4 (Fig. 2A).
Although Pi homeostasis is altered in 35S::SAP11 _{AYWB} transgenic plants, the molecular
mechanism of SAP11 _{AYWB} -triggered Pi starvation responses remains unclear and has yet to be
clarified. In this study, we show that the Pi starvation responses triggered by $SAP11_{AYWB}$ are
mainly dependent on the pathway regulated by PHR1 (Fig. 7B). PHR1, a MYB transcription
factor, plays a crucial role as a central hub in the transcriptional activation of genes involved
in Pi transport and translocation, root architecture remodeling, anthocyanin accumulation,
and sugar metabolic processes (Busto et al., 2010; Chiou and Lin, 2011). Thus, more than
75% of the Pi-starvation induced genes regulated by SAP11 _{AYWB} contain the potential
cis-regulatory elements for PHR1 binding in the promoter region (Table 3). These results

Yen-Ting Lu/Page 16/Plant Physiology

356	might provide some information in elucidating the functional relationships among
357	SAP11 _{AYWB} and Pi starvation responses. In <i>Arabidopsis</i> , there are 24 TCPs divided into two
358	classes based on sequence similarities (Aguilar-Martinez et al., 2007). Recently, Sugio et al.
359	(2011b) showed that class II CIN-TCPs were selectively destabilized by SAP11 _{AYWB} . Class II
360	CIN-TCPs contains 8 members, but only 5 of them can be targeted by miR319 (Ori et al.,
361	2007). In this study, we found that the transcript levels of Pi starvation-induced genes and
362	miR399 were not changed significantly in 35S::miR319a transgenic plants (Fig. 4C to E),
363	suggesting that miR319-mediated regulation may have minimal contribution to the
364	SAP11 _{AYWB} -triggered Pi starvation responses. Nevertheless, because only 5 transcripts out of
365	8 CIN-TCPs are targeted by miR319, involvement of other class II CIN-TCP members in Pi
366	starvation responses cannot be excluded. On the other hand, whether the class II
367	CYC/TB1-TCPs, the potential targets of SAP11 _{AYWB} , is also involved in Pi starvation
368	responses of 35S::SAP11 _{AYWB} transgenic plants requires further investigation.
369	Phytoplasmas have the smallest genome among bacteria, and many essential genes
370	required for standard metabolic functions are lost, including ATP synthase subunits (Oshima
371	et al., 2004; Chung et al., 2013). Thus, phytoplasmas might uptake essential substances from
372	the cytoplasm of surrounding host cells. Here, we showed that overexpression of $SAP11_{AYWB}$
373	could trigger Pi starvation responses and alter the Pi homeostasis in host cells (Fig. 2A and B)
374	Pi is an essential nutrient required for various basic biological functions, e.g., synthesis of
375	nucleic acids and phospholipids, regulation of energy metabolism, and signal transduction
376	cascades (Raghothama, 1999; Shen et al., 2011). Although the molecular mechanism of
377	SAP11 _{AYWB} -triggered Pi starvation responses remains elucidated, it might alter the
378	physiology of plant cells into a metabolically rich environment, which might be able to
379	facilitate the growth of phytoplasmas.
380	Pi deficiency is typically accompanied with the accumulation of Fe and sugar (Jain et al.,

Yen-Ting Lu/Page 17/Plant Physiology

2007; Ward et al., 2008; Rouached et al., 2010). Similarly, our RNA-Seq analysis uncovers
transcriptomic variations not only in genes involved in Pi starvation responses, but also in
genes related to sugar metabolic processes and iron-deficiency responses, e.g., GPT2, BAM5,
TPPI, SWEET1, bHLH100, bHLH38, and bHLH39 (Table 1). These molecular changes might
play a role in the cross-regulation between Pi starvation, sucrose signaling, and Fe responses.
Because sugar and Fe are also essential nutrients for the growth and development of
pathogens (Chen et al., 2010; Hood and Skaar, 2012), upregulation of genes involved in sugar
metabolic processes and iron-deficiency responses might provide a better environment for the
growth of phytoplasmas in plant cells.
The importance of Pi in the development of disease symptoms could be revealed in
huanglongbing disease, in which an increase in the expression levels of miR399 and Pi
starvation-induced genes was observed in citrus plants infected by Candidatus Liberibacter
(Zhao et al., 2013). Noticeably, the disease symptoms of Candidatus Liberibacter-infected
citrus were reduced after the application of Pi. In the case of phytoplasmas, although the
correlation between Pi and the disease symptoms remains unclear, the disease symptoms in
phytoplasma-infected plants could be reduced by the application of AM fungi (Lingua et al.,
2002; Romanazzi et al., 2009; Kamińska et al., 2010; Sampò et al., 2012). AM fungi are
symbiotic organisms that are able to enhance the uptake of Pi through upregulation of Pi
starvation responses in host plants (Branscheid et al., 2010; Gu et al., 2010; Volpe et al.,
2013). Thus, it will be interesting to explore whether the application of Pi could reduce the
phytoplasma-mediated disease symptoms in the future. Although it is reasonable to assume
that the availability of Pi in host cells might affect the disease symptoms in
phytoplasma-infected plants, other factors might alter the disease symptoms as well. For
example, the plant responses elicited by AM fungi, such as SA- and JA-defense responses
(Gutjahr and Paszkowski, 2009), might participate in counteracting the colonization of

406	phytoplasmas, leading to the reduction of disease symptoms.
407	In addition to the regulation of Pi uptake, we found that the expression of $SAP11_{AYWB}$ is
408	able to suppress host's innate immunity by repressing and delaying the SA-mediated defense
409	responses (Table2; Fig. 8A). As a result, SAP11 _{AYWB} -overexpressing plants become more
410	susceptible to bacterial infections (Fig. 8C). Because miR393 plays an important role in
411	modulating plant defense responses against bacterial pathogens through the repression of
412	auxin signaling pathway (Navarro et al., 2006; Katiyar-Agarwal and Jin, 2010), the changes
413	of host's innate immunity in 35S::SAP11 _{AYWB} transgenic plants might correlate with the
414	downregulation of miR393. However, the role of class II TCPs in 35S::SAP11 _{AYWB} transgenic
415	plants remains unclear. The suppression of host's innate immunity might be possible to be an
416	indirect consequence caused by the SAP11 _{AYWB} -mediated destabilization of TCPs.
417	Root architecture remodeling induced by Pi starvation requires the regulation of auxin
418	signaling (Nacry et al., 2005; Jain et al., 2007; Pérez-Torres et al., 2008; Péret et al., 2011). In
419	35S::SAP11 _{AYWB} transgenic plants, the formation of adventitious roots, elongation of lateral
420	roots, and reduction of primary roots was associated with the differential expression of
421	miRNAs involved in auxin signaling (Fig. 3C and 6B; Supplemental Data S2). These
422	miRNAs include miR160, miR393 and miR396, which target transcripts encoding the auxin
423	response factors, auxin receptors, and growth-regulating factors, respectively (Mallory et al.,
424	2005; Parry et al., 2009; Debernardi et al., 2012). Although the molecular changes in auxin
425	signaling triggered by SAP11 _{AYWB} remain largely unknown, the phenotypic alterations in root
426	architecture resemble to the disease symptoms appeared in the roots of several
427	phytoplasma-infected plants (Del Serrone et al., 2001; Lee et al., 2006).
428	Our findings provide useful information for the activities of SAP11 _{AYWB} in plant immune
429	responses and suggest that the expression of $SAP11_{AYWB}$ not only suppresses the JA signaling
430	responses against insect vectors but also downregulates the SA-mediated defense responses

431	against bacterial pathogens. These studies not only contribute to the understanding of
432	molecular mechanisms underlying the interaction between phytoplasmas and plants, but also
433	provide new insights into development of the strategy in controlling phytoplasma diseases.
434	
435	MATERIALS AND METHODS
436	Plant Materials and Growth Conditions
437	Arabidopsis ecotype Col-0 was used for the generation of transgenic plants, and bacterial
438	inoculation. Nicotiana benthamiana was used for agroinfiltration. Plants were grown at 21°C
439	in a semicontrolled walk-in chamber with a 16:8-h photoperiod for Agrobacterium
440	transformation and Pi measurement; a 12:12-h photoperiod was used for SA treatment and
441	bacterial inoculation.
442	
443	Generation of Transgenic Arabidopsis Plants
444	A synthetic DNA template with the codon-optimized version of SAP11 _{AYWB} was used for
445	PCR amplification. A DNA fragment encoding SAP11 _{AYWB} without the signal peptide was
446	amplified using AccuPrime pfx DNA polymerase (Invitrogen) and subcloned into the
447	pBA002 vector under the control of the <i>cauliflower mosaic virus (CaMV)</i> 35S promoter.
448	After verification by DNA sequencing, plasmid DNAs were introduced into Agrobacterium
449	tumefaciens strain ABI by using the freeze-thaw method and transformed into Arabidopsis by
450	using the floral-dip method. To obtain homozygous transgenic lines expressing $SAP11_{AYWB}$,
451	seeds were screened on $1/2 \times$ MS medium containing Basta (25 $\mu g \text{ ml}^{-1}$) and carbenicillin
452	$(100~\mu g~ml^{-1})$ and examined with western blotting using specific anti-SAP11 antibodies.
453	
454	Root Architecture Investigation and Anthocyanin Measurement
455	Arabidopsis seeds were germinated on 1/2× MS medium with 1% sucrose and 1% agar.

Yen-Ting Lu/Page 20/Plant Physiology

After incubation for 3 days, seedlings were transferred to the half-strength modified
Hoagland nutrient solution containing 1% sucrose and 1% agar with the indicated
concentration of KH ₂ PO ₄ . For root architecture investigation, seedlings were placed vertically
to allow root growth along the surface of the agar, and the root architecture was observed at
14 days after germination. For anthocyanin measurement, seedlings were harvested at 13
days after germination and the anthocyanin content was determined as described with
modifications (Saijo et al., 2009). Briefly, seedlings were homogenized in the extraction
buffer (Propanol: $HCl:H_2O=18:1:81$) and immersed into boiling water for 1.5 minutes. After
centrifugation, the supernatant was collected for measuring the absorbance at 535 and 650 nm.
The relative anthocyanin amount was calculated by the equation: (A535-2XA650)/fresh
weight (g).

Pi Measurement

Pi contents were measured according to the method described by Chiou et al. (2006). Briefly, Arabidopsis seeds were germinated on agar plate with half-strength modified Hoagland medium containing 0.25 mM KH₂PO₄ for 11 days. The seedlings were then transferred to hydroponic culture. Before Pi starvation treatment, seedlings were grown on 0.25 mM KH₂PO₄. Fresh tissues were homogenized with extraction buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA, 100 mM NaCl, 1 mM-mercaptoethanl, and 1 mM phenylmethylsulfonyl fluoride) and then mixed with 1% glacial acetic acid. After centrifugation at 13,000 × g for 5 min, Pi assay solution (0.35% NH₄MoO₄, 0.86 NH₂SO₄, and 1.4% ascorbic acid) was added to the supernatant and then incubated at 42°C for 30 min. Pi content was measured using Tecan Infinite 200 PRO at A₈₂₀.

Small RNA Northern Blotting

Yen-Ting Lu/Page 21/Plant Physiology

481	For miRNA analysis, 12 µg of total RNA was fractionated on a 15% polyacrylamide gel
482	containing 8 M urea and then transferred to a Hybond-N ⁺ membrane (GE Biosciences).
483	Oligonucleotide probes were end-labeled with $[\gamma^{-32}P]\mbox{ATP}$ by using T4 polynucleotide kinase
484	(New England Biolabs). Hybridization was performed overnight at 42°C with the
485	ULTRAHyb-Oligo hybridization buffer (Ambion). Signals were detected using
486	autoradiography.
487	
488	Antibody Production and Western Blotting
489	To generate recombinant proteins, a PCR product encoding SAP11 _{AYWB} without the signal
490	peptide was subcloned into the SUMO-pET vector to generate an N-terminal His-SUMO
491	fusion construct. After verification by DNA sequencing, plasmid DNA was introduced into
492	Escherichia coli BL21 (DE3) cells, and His-SUMO-SAP11 _{AYWB} protein was purified using
493	Ni ²⁺ -NTA resin (Qiagen), according to the manufacturer's instruction. After being cleaved
494	with <i>Ulp</i> 1 to remove the His-SUMO tag, recombinant SAP11 _{AYWB} protein was purified for
495	antibody production in a rabbit. The polyclonal antibody against $SAP11_{AYWB}$ was obtained by
496	affinity purification using a polyvinylidene difluoride membrane as a coupling matrix. To
497	detect SAP11 _{AYWB} in <i>Arabidopsis</i> transgenic plants, total extracts were prepared by directly
498	adding $2.5 \times$ SDS sample buffer into plant samples after grinding. Amersham ECL western
499	blotting reagents were used for the reactions, and the chemiluminescence signals were
500	captured using an ImageQuant LAS 4000 mini (GE Healthcare).
501	
502	RNA-Seq Analysis
503	To perform the RNA-Seq analysis, 3-week-old 35S::SAP11 _{AYWB} transgenic plants grown in
504	1/2× MS medium were used, and next-generation sequencings were performed using Hiseq
505	2000 (Illumina) with total RNA samples extracted by the RNeasy plant mini kit (Qiagen). For Yen-Ting Lu/Page 22/Plant Physiology

transcriptome analysis, sequence reads were aligned using CLC bio, and gene expression levels were normalized as reads per kilobase of exon model per million mapped reads (RPKM). To identify differentially expressed genes in $35S::SAP11_{AYWB}$ transgenic plants, DEseq (Anders and Huber, 2010) analysis was performed, and differentially expressed genes with P < 0.05 were selected for further analysis.

qRT-PCR

For qRT-PCR analysis, *Arabidopsis* total RNA was extracted using the Trizol reagent (Invitrogen), and complementary DNAs were synthesized using Superscript III first strand synthesis supermix (Invitrogen), according to the manufacturer's instructions. The RNA expression analyses were performed using the KAPA SYBR fast qPCR kit (Kapa Biosystems) and Illumina Eco real-time PCR system. The expression levels of the selected genes were determined by normalizing to the reference gene *Actin2*. Experiments were repeated at least three times.

SA Treatments and Bacterial Inoculations

To examine the immune responses in $35S::SAP11_{AYWB}$ transgenic plants, 4- to 5-week-old plants grown in the soil were treated with 1 mM SA with foliar sprays. After spraying, the aerial parts of the plants were harvested at indicated times and frozen immediately in liquid nitrogen. For bacterial inoculations, *Pseudomonas syringae* pv. *tomato* DC3000 (*Pto* DC3000) was cultured in NY broth (3 g of beef extract, 5 g of peptone, and 3 g of yeast extract in 1 L of water) at 28°C. The 4- to 5-week-old $35S::SAP11_{AYWB}$ transgenic plants were inoculated with the bacterial suspension (5×10^5 CFU ml⁻¹). The inoculated plants were maintained at 21°C, and bacterial populations were determined at indicated time intervals by using NY agar plates containing rifampicin ($50 \mu g ml^{-1}$). Experiments were repeated at least three times.

Yen-Ting Lu/Page 23/Plant Physiology

531	
532	ACKNOWLEDGEMENTS
533	We thank Dr. Yuval Eshed (Weizmann Institute of Science, Rehovot, Israel) for providing
534	us with 35S::miR319a seeds; Dr. Nai-Chun Lin (National Taiwan University, Taipei, Taiwan)
535	for the Pto DC3000 strain.
536	
537	LITERATURE CITED
538	Aguilar-Martinez JA, Poza-Carrion C, Cubas P (2007) <i>Arabidopsis BRANCHED1</i> acts as
539	an integrator of branching signals within axillary buds. Plant Cell 19: 58-72
540	Anders S, Huber W (2010) Differential expression analysis for sequence count data.
541	Genome Biol 11: R106
542	Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a
543	microRNA and its APETALA2-like target genes. Plant Cell 15: 2730-2741
544	Aung K, Lin S-I, Wu C-C, Huang Y-T, Su C-l, Chiou T-J (2006) pho2, a phosphate
545	overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant
546	Physiol 141 : 1000-1011
547	Bai X, Zhang J, Ewing A, Miller SA, Jancso Radek A, Shevchenko DV, Tsukerman K,
548	Walunas T, Lapidus A, Campbell JW, Hogenhout SA (2006) Living with genome
549	instability: the adaptation of phytoplasmas to diverse environments of their insect and
550	plant hosts. J Bacteriol 188: 3682-3696
551	Bai X, Correa VR, Toruño TY, Ammar E-D, Kamoun S, Hogenhout SA (2008) AY-WB
552	phytoplasma secretes a protein that targets plant cell nuclei. Mol Plant-Microbe Interact 22
553	18-30
554	Bazin J, Khan GA, Combier J-P, Bustos-Sanmamed P, Debernardi JM, Rodriguez R,
555	Sorin C, Palatnik J, Hartmann C, Crespi M, Lelandais-Brière C (2013) MiR396

556	affects mycorrhization and root meristem activity in the legume <i>Medicago truncatula</i> .
557	Plant J 74 : 920-934
558	Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible W-R,
559	Krajinski F (2010) Expression pattern suggests a role of miR399 in the regulation of the
560	cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Mol
561	Plant-Microbe Interact 23: 915-926
562	Bucher M, Wegmüller S, Drissner D (2009) Chasing the structures of small molecules in
563	arbuscular mycorrhizal signaling. Cur Opin Plant Biol 12: 500-507
564	Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Pérez-Pérez J, Solano R, Leyva A,
565	Paz-Ares J (2010) A central regulatory system largely controls transcriptional activation
566	and repression responses to phosphate starvation in <i>Arabidopsis</i> . PLoS Genet 6 : e1001102
567	Chang WC, Lee TY, Huang HD, Huang HY and Pan RL (2008) PlantPAN: Plant
568	Promoter Analysis Navigator, for identifying combinatorial cis-regulatory elements with
569	distance constraint in plant gene group. BMC Genomics 9: 561
570	Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S, Domann E,
571	Chakraborty T, Hain T (2006) Intracellular gene expression profile of listeria
572	monocytogenes. Infect Immun 74: 1323-1338
57 3	Chen L-Q, Hou B-H, Lalonde S, Takanaga H, Hartung ML, Qu X-Q, Guo W-J, Kim J-G,
574	Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC,
575	Mudgett MB, Frommer WB (2010) Sugar transporters for intercellular exchange and
576	nutrition of pathogens. Nature 468 : 527-532
577	Chiou T-J, Aung K, Lin S-I, Wu C-C, Chiang S-F, Su C-I (2006) Regulation of phosphate
578	homeostasis by microRNA in Arabidopsis. Plant Cell 18: 412-421
579	Chiou T-J, Lin S-I (2011) Signaling network in sensing phosphate availability in plants. Ann.
580	Rev. Plant Biol. 62 : 185-206

581	Chung W-C, Chen L-L, Lo W-S, Lin C-P, Kuo C-H (2013) Comparative analysis of the
582	peanut witches'-broom phytoplasma genome reveals horizontal transfer of potential mobile
583	units and effectors. PLoS ONE 8: e62770
584	Debernardi JM, Rodriguez RE, Mecchia MA, Palatnik JF (2012) Functional
585	specialization of the plant mir396 regulatory network through distinct microrna-target
586	interactions. PloS Genet 8: e1002419
587	Del Serrone P, Marzachì C, Bragaloni M, Galeffi P (2001) Phytoplasma infection of
588	tomato in central Italy. Phytopathol Mediterr 40: 137-142
589	Gu M, Xu K, Chen A, Zhu Y, Tang G, Xu G (2010) Expression analysis suggests potential
590	roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum
591	lycopersicum. Physiol Plant 138: 226-237
592	Gu M, Chen A, Dai X, Liu W, Xu G (2011) How does phosphate status influence the
593	development of the arbuscular mycorrhizal symbiosis? Plant Signal Behav 6: 1300-1304
594	Gutierrez L, Bussell JD, Păcurar DI, Schwambach J, Păcurar M, Bellini C (2009)
595	Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex
596	regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant
597	Cell 21 : 3119-3132
598	Gutjahr C, Paszkowki U (2009) Weights in the balance: JA and SA signaling in
599	root-biotroph interactions. MPMI 22: 763-772
600	Hogenhout SA, Oshima K, Ammar E-D, Kakizawa S, Kingdom HN, Namba S (2008)
601	Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9: 403-423
602	Hood MI, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen–host
603	interface. Nat Rev Micro 10: 525-537
604	Hsieh L, Lin S, Shih A, Chen J, Lin W, Tseng C, Li W, Chiou T (2009) Uncovering small
605	RNA-mediated responses to phosphate-deficiency in Arabidopsis by deep sequencing.
	Yen-Ting Lu/Page 26/Plant Physiology

606	Plant Physiol 151 : 2120-2132
607	Huang T-K, Han C-L, Lin S-I, Chen Y-J, Tsai Y-C, Chen J-W, Lin W-Y, Chen P-M, Liu
608	T-Y, Chen Y-S and Chiou T-J (2013) Identification of downstream components of
609	ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in
610	Arabidopsis roots. Plant Cell 25: 4044-4060
611	Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B,
612	Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on
613	localized phosphate deficiency-induced modulation of different traits of root system
614	architecture in Arabidopsis. Plant Physiol 144: 232-247
615	Jain A, Nagarajan V, Raghothama K (2012) Transcriptional regulation of phosphate
616	acquisition by higher plants. Cell Mol Life Sci 69: 3207-3224
617	Kamińska M, Klamkowski K, Berniak H, Sowik I (2010) Response of mycorrhizal
618	periwinkle plants to aster yellows phytoplasma infection. Mycorrhiza 20: 161-166
619	Katiyar-Agarwal S, Jin H (2010) Role of small RNAs in host-microbe interactions. Annu
620	Rev Phytopathol 48: 225-246
621	Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: Induced plant
622	defenses and insect populations. Science 305: 665-668
623	Kiedrowski S, Kawalleck P, Hahlbrock K, Somssich IE, Dangl JL (1992) Rapid activation
624	of a novel plant defense gene is strictly dependent on the Arabidopsis RPM1 disease
625	resistance locus. EMBO J 11: 4677-4684
626	Knauer S, Holt Anna L, Rubio-Somoza I, Tucker Elise J, Hinze A, Pisch M, Javelle M,
627	Timmermans Marja C, Tucker Matthew R, Laux T (2013) A protodermal miR394
628	signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev
629	Cell 24 : 125-132
630	Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and
	Yen-Ting Lu/Page 27/Plant Physiology

631	deep-sequencing data. Nucleic Acids Res 39: D152-D157
632	Kuo H-F, Chiou T-J (2011) The role of microRNAs in phosphorus deficiency signaling.
633	Plant Physiol 156 : 1016-1024
634	Lee I-M, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: phytopathogenic
635	mollicutes1. Annu Rev Microbiol 54 : 221-255
636	Lee I-M, Bottner KD, Munyaneza JE, Davis RE, Crosslin JM, du Toit LJ, Crosby T
637	(2006) Carrot purple leaf: A new spiroplasmal disease associated with carrots in
638	Washington State. Plant Dis 90: 989-993
639	Lin W-Y, Huang T-K, Chiou T-J (2013) NITROGEN LIMITATION ADAPTATION, a
640	target of microRNA827, mediates degradation of plasma membrane-localized phosphate
641	transporters to maintain phosphate homeostasis in <i>Arabidopsis</i> . Plant Cell 25 : 4061-4074
642	Lingua G, D'Agostino G, Massa N, Antosiano M, Berta G (2002) Mycorrhiza-induced
643	differential response to a yellows disease in tomato. Mycorrhiza 12: 191-198
644	Liu T-Y, Aung K, Tseng C-Y, Chang T-Y, Chen Y-S, Chiou T-J (2011) Vacuolar Ca2 ⁺ /H ⁺
645	transport activity is required for systemic phosphate homeostasis involving shoot-to-root
646	signaling in Arabidopsis. Plant Physiol 156: 1176-1189
647	Liu T-Y, Huang T-K, Tseng C-Y, Lai Y-S, Lin S-I, Lin W-Y, Chen J-W, Chiou T-J (2012)
648	PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in <i>Arabidopsis</i> .
649	Plant Cell 24 : 2168-2183
650	Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis
651	AUXIN RESPONSE FACTOR17 is essential for proper development and modulates
652	expression of early auxin response genes. Plant Cell 17: 1360-1375
653	Muller R, Morant M, Jarmer H, Nilsson L, Nielsen T (2007) Genome-wide analysis of the
654	Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism.
655	Plant Physiol 143 : 156 -171

656	Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P (2005)
657	A role for auxin redistribution in the responses of the root system architecture to phosphate
658	starvation in Arabidopsis. Plant Physiology 138: 2061-2074
659	Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG
660	(2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling.
661	Science 312 : 436-439
662	Ohkama-Ohtsu N, Wasaki J (2010) Recent progress in plant nutrition research: cross-talk
663	between nutrients, plant physiology and soil microorganisms. Plant Cell Physiol 51:
664	1255-1264
665	Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z,
666	Efroni I, Pekker I, Alvarez JP, Blum E, Zamir D, Eshed Y (2007) Regulation of
667	LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat
668	Genet 39 : 787-791
669	Oshima K, Kakizawa S, Nishigawa H, Jung H-Y, Wei W, Suzuki S, Arashida R, Nakata
670	D, Miyata S-i, Ugaki M, Namba S (2004) Reductive evolution suggested from the
671	complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 36: 27-29
672	Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible W-R
673	(2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by
674	comprehensive real-time polymerase chain reaction profiling and small RNA sequencing.
675	Plant Physiol 150 : 1541-1555
676	Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E,
677	Gray WM, Bennett M, Estelle M (2009) Complex regulation of the TIR1/AFB family of
678	auxin receptors. Proc Natl Acad Sci USA 106: 22540-22545
679	Péret B, Clément M, Nussaume L, Desnos T (2011) Root developmental adaptation to
680	phosphate starvation: better safe than sorry. Trends Plant Sci 16: 442-450

681	Pérez-Torres C-A, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S,
682	Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root
683	development in Arabidopsis by modulating auxin sensitivity via a mechanism involving
684	the TIR1 auxin receptor. Plant Cell 20: 3258-3272
685	Pulido A, Laufs P (2010) Co-ordination of developmental processes by small RNAs during
686	leaf development. J Exp Bot 61: 1277-1291
687	Radtke AL, O'Riordan MXD (2006) Intracellular innate resistance to bacterial pathogens.
688	Cell Microbiol 8: 1720-1729
689	Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50 :
690	665-693
691	Romanazzi G, Musetti R, Marzachì C, Casati P (2009) Induction of resistance in the
692	control of phytoplasma diseases. Petria 19: 113-129
693	Rouached H, Arpat AB, Poirier Y (2010) Regulation of phosphate starvation responses in
694	plants: signaling players and cross-talks. Mol Plant 3: 288-299
695	Rubio V, Linhares F, Solano R, Martin A, Iglesias J, Leyva A, Paz-Ares J (2001) A
696	conserved MYB transcription factor involved in phosphate starvation signaling both in
697	vascular plants and in unicellular algae. Genes Dev 15: 2122 – 2133
698	Saijo Y, Tintor N, Lu X, Rauf P, Pajerowska-Mukhtar K, Häweker H, Dong X,
699	Robatzek S, Schulze-Lefert P (2009) Receptor quality control in the endoplasmic
700	reticulum for plant innate immunity. EMBO J 28: 3439-3449
701	Sampò S, Massa N, D'Agostino U, Bosco D, Marzachì C, Berta G (2012) Effects of two
702	AM fungi on phytoplasma infection in the model plant Chrysanthemum carinatum Agric
703	Food Sci 21 : 39-51
704	Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U,
705	Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets.

706	PLoS Biol 6 : e230
707	Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus
708	dynamics: from soil to plant. Plant Physiol 156: 997-1005
709	Song JB, Huang SQ, Dalmay T, Yang ZM (2012) Regulation of leaf morphology by
710	microRNA394 and its target <i>LEAF CURLING RESPONSIVENESS</i> . Plant Cell Physiol 53 :
711	1283-1294
712	Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ,
713	Buchala AJ, Métraux J-P, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CMJ
714	(2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense
715	pathways through a novel function in the cytosol. Plant Cell 15: 760-770
716	Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA
717	(2011a) Diverse targets of phytoplasma effectors: from plant development to defense
718	against insects. Annu Rev Phytopathol 49: 175-195
719	Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA (2011b) Phytoplasma
720	protein effector SAP11 enhances insect vector reproduction by manipulating plant
721	development and defense hormone biosynthesis. Proc Natl Acad Sci USA 108:
722	E1254–E1263
723	Volpe V, Dell'Aglio E, Giovannetti M, Ruberti C, Costa A, Genre A, Guether M,
724	Bonfante P (2013) An AM-induced, <i>MYB</i> -family gene of <i>Lotus japonicus</i> (<i>LjMAMI</i>)
725	affects root growth in an AM-independent manner. Plant J 73: 442-455
726	Ward JT, Lahner B, Yakubova E, Salt DE, Raghothama KG (2008) The effect of iron on
727	the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiol 147
728	1181-1191
729	Wu G, Park MY, Conway SR, Wang J-W, Weigel D, Poethig RS (2009) The sequential
730	action of miR156 and miR172 regulates developmental timing in <i>Arabidopsis</i> . Cell 138 :
	Yen-Ting Lu/Page 31/Plant Physiology

731	750-759
732	Zhao H, Sun R, Albrecht U, Padmanabhan C, Wang A, Coffey MD, Girke T, Wang Z,
733	Close TJ, Roose M, Yokomi RK, Folimonova S, Vidalakis G, Rouse R, Bowman KD,
734	Jin H (2013) Small RNA profiling reveals phosphorus deficiency as a contributing factor
735	in symptom expression for Citrus Huanglongbing disease. Mol Plant 6: 301-310
736	

7	1	7
/	3	/

738	FIGURE LEGENDS
739	Figure 1. Expression of SAP11 _{AYWB} regulates the accumulation of miRNAs involved in Pi-
740	and auxin-signaling responses in Arabidopsis. (A) Comparison of leaf morphologies between
741	WT (Col-0) and transgenic plants carried SAP11 _{AYWB} or miR319a driven by CaMV 35S
742	promoter. Scale bar: 8 mm. (B) Examination of the translated product of SAP11 _{AYWB} by
743	western blotting using specific antibody against SAP11 _{AYWB} . Asterisk indicates the
744	cross-reacting band appeared in all samples. Anti-tubulin was used for loading control. (C)
745	Comparisons of the expression levels of miRNAs in WT and 35S::SAP11 _{AYWB} transgenic lines
746	by small RNA northern blotting. The RNAs staining bands were used as a loading control.
747	The values of band intensities were measured using ImageJ.
748	
749	Figure 2. SAP11 _{AYWB} elicits the expression of Pi starvation-induced genes and increases the
750	accumulation of Pi in Arabidopsis. (A) The mRNA levels of genes triggered by Pi starvation
751	responses in WT (Col-0) plants and 35S::SAP11 _{AYWB} transgenic lines were examined by
752	quantitative RT-PCR (qRT-PCR), and normalized to Actin2. The relative expression levels of
7 53	each gene in WT plants were set at 1. (B) The levels of Pi concentration in the aerial parts of
754	WT and 35S::SAP11 _{AYWB} transgenic lines grown in hydroponic solutions with 0.01 mM or
755	0.25 mM KH ₂ PO ₄ were measured. Statistically significant differences were determined using
756	Student's t test (* p < 0.05, ** p < 0.005 for transgenic plants versus the WT).
757	
758	Figure 3. Expression of SAP11 _{AYWB} in <i>Arabidopsis</i> alters the phenotypes in anthocyanin
759	accumulation and root architecture. Comparisons of plant size (A), anthocyanin accumulation
760	(B), and root morphology (C) between WT (Col-0) plants and 35S::SAP11 _{AYWB} transgenic
761	lines grown on horizontal (A) or vertical (C) plates containing 0.01 mM or 0.25 mM KH ₂ PO ₄ .

Yen-Ting Lu/Page 33/Plant Physiology

762	Statistically significant differences were determined using Student's t test (* p < 0.05, ** p <
763	0.005 for transgenic plants versus the WT). Scale bars: 15 mm. FW: fresh weight.
764	
765	Figure 4. Comparison of gene expression profiles. (A) Comparison of the expression levels
766	of SAP11 _{AYWB} in <i>Arabidopsis 35S::SAP11_{AYWB}</i> transgenic lines by western blotting using
767	specific antibodies against SAP11 _{AYWB} . Asterisk indicates the cross-reacting band appeared in
768	all samples. (B) Venn diagrams show the comparisons of SAP11 _{AYWB} -elicited genes (p
769	0.001) with the Pi starvation response (PSR) genes (up-regulation, 2-fold higher). PSR (I)
770	indicates the data set collected by Muller et al. (2007) from leaf samples in response to Pi
771	starvation. PSR (II) and PSR (III) indicate the data set collected by Liu et al. (2011) from leaf
772	and root samples, respectively, in response to Pi starvation. (C) The mRNA levels of
773	differentially expressed genes identified in the 35S::SAP11 _{AYWB} transgenic line #13 were
774	examined by qRT-PCR, and normalized to Actin2. The relative expression levels of each gene
775	in WT (Col-0) plants were set at 1. (D) Comparisons of the expression levels of miRNAs by
776	small RNA northern blotting. The RNAs staining bands were used as a loading control. (E)
777	The mRNA levels of genes involved in Pi starvation responses were examined by qRT-PCR,
778	and normalized to Actin2. The relative expression levels of each gene in WT (Col-0) plants
779	were set at 1. Statistically significant differences were determined using Student's t test (* p <
780	0.05, ** $p < 0.005$ for transgenic plants versus the WT). The values of band intensities were
781	measured using ImageJ.
782	
783	Figure 5. Comparison of miRNA expression profiles. Scatter plot shows the related
784	expression levels of known miRNAs in Arabidopsis WT plants (X-axis) and 35S::SAP11 _{AYWB}
785	transgenic line #13 (Y-axis), in which the scales indicate the expression intensity of
786	normalized miRNAs. Red points refer to miRNAs whose expression levels were 2-fold

Yen-Ting Lu/Page 34/Plant Physiology

787	higher in 35S::SAP11 _{AYWB} transgenic line #13 as compared with WT plants. Green points
788	refer to miRNAs whose expression levels were 2-fold lower in 35S::SAP11 _{AYWB} transgenic
789	line #13 as compared with WT plants. Blue points refer to miRNAs whose expression levels
790	were not higher or lower than 2-fold in the 35S::SAP11 _{AYWB} transgenic line #13 as compared
791	with WT plants.
792	
793	Figure 6. Phenotypic comparisons in leaf morphology and root architecture between
794	35S::miR319a and 35S::SAP11 _{AYWB} transgenic plants. (A) Leaf morphologies of Arabidopsis
795	seedlings grown on 1/2× MS medium. Scale bar: 8 mm. (B) Root architectures of
796	Arabidopsis seedlings grown on the vertical plate containing 0.01 mM KH ₂ PO ₄ . Scale bar: 15
797	mm.
798	
799	Figure 7. <i>PHR1</i> is required for SAP11 _{AYWB} -triggered Pi starvation responses in <i>Arabidopsis</i> .
800	(A) Leaf morphologies of <i>Arabidopsis</i> transgenic plants overexpressing SAP11 _{AYWB} in the
801	background of a $phr1$ mutant. The expression level of SAP11 _{AYWB} was detected by western
802	blotting using specific antibodies against SAP11 _{AYWB} . Asterisk indicates the cross-reacting
803	band appeared in all samples. Scale bar: 8 mm. (B) The mRNA levels of genes involved in Pi
804	starvation responses among WT (Col-0), phr1 mutant, and 35S::SAP11 _{AYWB} /phr1 transgenic
805	plants were examined by qRT-PCR, and normalized to Actin2. The relative expression levels
806	of each gene in WT plants were set at 1. Statistically significant differences were determined
807	using Student's t test (* p < 0.05, ** p < 0.005 for WT versus $phr1$; + p > 0.05 for $phr1$
808	versus 35S::SAP11 _{AYWB} /phr1).
809	
810	Figure 8. SAP11 _{AYWB} suppresses the innate immunity against bacterial pathogens in
811	Arabidopsis. RNA samples were extracted from SA-treated WT (Col-0) and 35S::SAP11 _{AYWB}
	Yen-Ting Lu/Page 35/Plant Physiology

transgenic plants harvested at indicated times. The mRNA levels of genes involved in
SA-mediated defense signaling network (A) and JA-signaling responses (B) were examined
by qRT-PCR, and normalized to Actin2. The relative expression levels of each gene in WT
plants without SA treatment were set at 1. (C) Bacterial growth of <i>Pseudomonas syringae</i> pv.
tomato DC3000 (Pto DC3000) in WT and 35S::SAP11 _{AYWB} transgenic plants were measured
to examine the effects of $SAP11_{AYWB}$ on the resistance of $Arabidopsis$ against bacterial
pathogens. Hand-infiltrated leaves were collected at the indicated times for measuring the in
planta growth of Pto DC3000. Statistically significant differences were determined using
Student's t test (* $p < 0.05$, ** $p < 0.005$ for transgenic plants versus the WT).

822 **TABLES**

Category			Base Mean ^a		Fold		
Rank	Name	AGI ^b No.	WT	35S::SAP11	chang e ^c	Short description	Reference
Pi star	vation respo	nse					
1^{st}	MYB90	At1g66390	1.11	60.23	54.14	Myb domain protein 90	B, D
2 nd	IPS1	At3g09922	18.91	620.26	32.8	Induced by phosphate starvation 1	
3 rd	GPT2	At1g61800	7.79	175.29	22.51	Glucose-6-phosphate/phosphate translocator 2	B, D
5 th	SULTR1;3	At1g22150	5.56	82.7	14.87	Sulfate transporter 1;3	A, C
6^{th}	SPX3	At2g45130	5.56	79.11	14.22	SPX domain gene 3	B, C, D
8^{th}	MGDC	At2g11810	30.04	374.86	12.48	Monogalactosyldiacylglycerol synthase type C	A, B, C, D
10^{th}	BAM5	At4g15210	13.35	161.81	12.12	Beta-amy lase 5	A, B, C
11^{th}		At5g09570	7.79	89.89	11.54	Cox19-like CHCH family protein	С
14^{th}	PS2	At1g73010	67.86	737.13	10.86	Phosphate starvation-induced gene 2	A, B, C, D
15 th	PEPC1	At1g17710	46.72	468.34	10.02	PhosphoEthanolamine/PhosphoCholine phophatase 1	A, B, C, D
21^{th}		At5g20790	84.55	747.01	8.84	Unknown protein	A, B, C, D
24^{th}		At1g23110	28.92	232.82	8.05	Unknown protein	A
35 th	IPS2	At5g03545	199.13	1141.65	5.73	Induced by phosphate starvation 2	
36^{th}	SPX1	At5g20150	284.78	1629.77	5.72	SPX domain gene 1	A, B, C, D
45 th	PLDP2	At3g05630	73.42	317.32	4.32	Phospholipase D P2	A, B, C, D
48^{th}	PS3	At3g47420	543.98	2238.34	4.11	Phosphate starvation-induced gene 3	A, B, C, D
52 th	SRG3	At3g02040	327.05	1253.11	3.83	Senescence-related gene 3	A, B, C, D
56 th	PAP17	At3g17790	263.65	944.78	3.58	Purple acid phosphatase 17	A, B, C, D
Sugar r	netabolic pro	ocesses					
3^{rd}	GPT2	At1g61800	7.79	175.29	22.51	Glucose-6-phosphate/phosphate translocator 2	
10^{th}	BAM5	At4g15210	13.35	161.81	12.12	Beta-amy lase 5	
16^{th}	TPPI	At5g10100	13.349	133.04	9.97	Trehalose-6-phosphate phosphatase I	
44^{th}	SWEET1	At1g21460	350.42	1552.46	4.43	Nodulin MtN3 family protein	
Iron-de	eficiency resp	ponses					
20^{th}	bHLH100	At2g41240	20.02	191.47	9.56	Basic helix-loop-helix protein 100	
25^{th}	bHLH38	At3g56970	32.26	249.01	7.72	Basic helix-loop-helix protein 38	
29^{th}	bHLH39	At3g56980	35.6	251.7	7.07	Basic helix-loop-helix protein 39	
^a Base	mean: the nu	mber of read	s divided	by the siz	e factor	(normalized constant) of sample.	
AGI:	Arabidopsis	Genome Ini	tiative				
Fold	change: 35S:	:SAP11 AYWB	base mea	an/WT base	mean		
1 Refer	ence: Pi star	vation-induce	d genes	(> 2 fold ch	ange) re	eported by Muller et al. (2007) (A), liu et al. (2011)	

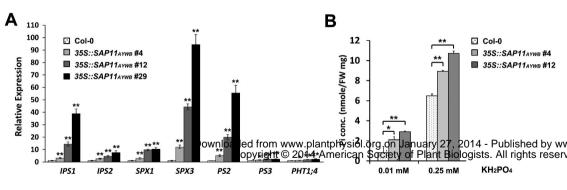
Table 2. Classification and annotation of the top 10 differentially expressed genes (p < 0.001) suppressed by SAP11_{AYWB}

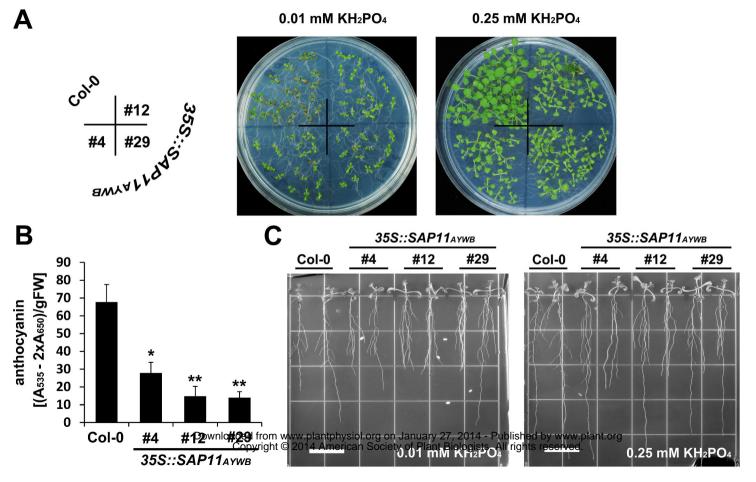
Category		A CIT N	Base Mean ^a		Fold	
Rank	Name	AGI ^b No.	WT	35S::SAP11 _{AYWB}	change ^c	Short description
1 st		At3g16670	814.29	0.89	914.9	Pollen Ole e 1 allergen and extensin family protein
2^{nd}	ELI3-1	At4g37980	1311.55	2.69	487.6	Elicitor-activated gene 3-1
3^{rd}		At3g05730	2143.65	8.09	264.9	Defensin-like (DEFL) family protein
4^{th}	PR1	At2g14610	150.17	0.89	168.7	Pathogenesis-related gene 1
5^{th}		At2g29300	518.39	5.393	96.1	NAD(P)-binding Rossmann-fold superfamily protein
6^{th}		At3g19620	109.01	1.79	60.9	Glycosyl hydrolase family protein
7 th		A44~12000	50 O5	1.79	22.0	Gamma interferon responsive lysosomal thiol (GILT)
,		At4g12900	58.95	1.79	32.9	reductase family protein
8^{th}	LOX2	At3g45140	2688.74	86.29	31.2	Lipoxygenase 2
9 th		At2g29290	80.09	3.59	22.3	NAD(P)-binding Rossmann-fold superfamily protein
10 th			75.64	2.50	21.1	S-adenosyl-L-methionine-dependent methyltransferases
10		At2g32160	75.64	3.59	21.1	superfamily protein

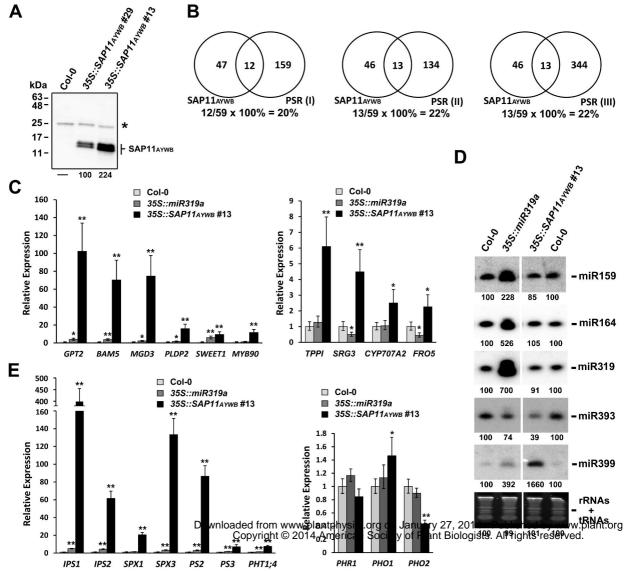
^a Base mean: the number of reads divided by the size factor (normalized constant) of sample.

^b AGI: Arabidopsis Genome Initiative

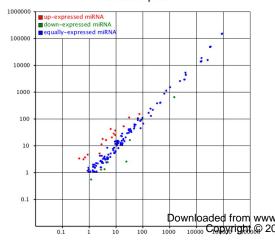

^c Fold change: WT base mean/35S::SAP11aywa base mean

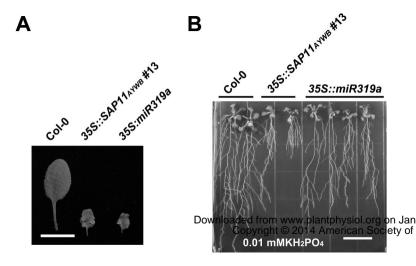

 $\textbf{Table 3.} \ \ \textbf{The potential sequence of PHR1-binding site found at the upstream region of Pi-starvation induced genes regulated by SAP11_{AYWB}$

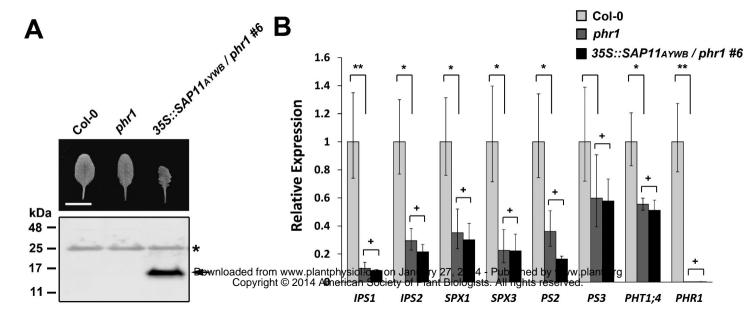

Gene	AGI ^a number	Sequence (Position ^b)
IPS1	At3G09922	GCATATTC (-581); GCATATTC (-547)
GPT2	At1G61800	GTATATTC (-125)
SULTR1;3	At1G22150	GGATATTC (-439)
SPX3	At2G45130	GAATATGC (-212); GCATATCC (-89)
	At5G09570	GGATATAC (-1656); GAATATTC (-142)
PS2	At1G73010	GGATATTC (-693); GAATATTC (-308)
PEPC1	At1G17710	GAATATTC (-765); GAATATTC (-370)
	At5G20790	GAATATGC (-1325)
	At1G23110	GAATATGC (-346); GAATATGC (-171)
IPS2	At5G03545	GTATATGC (-687); GCATATTC (-149)
SPX1	At5G20150	GAATATTC (-824); GGATATTC (-67); GAATATTC (-43)
PLDP2	At3G05630	GAATATTC (-698); GGATATTC (-664); GCATATAC (-635); GCATATAC (-244)
SRG3	At3G02040	GTATATGC (-334); GAATATTC (-137); GAATATCC (-73); GAATATTC (-73)
PAP17	At3G17790	GAATATCC (-131)

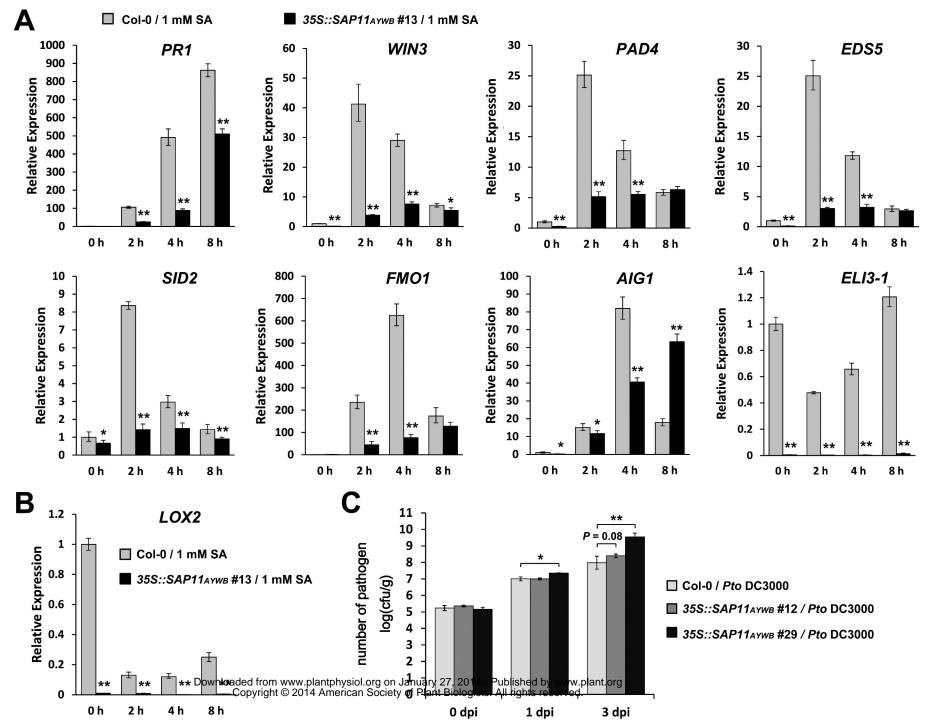

^a AGI: Arabidopsis Genome Initiative

^b Position: the position in the 5'-upstream region is given with respect to the ATG strat codon.






Scatter plot



Expression level (35S.::SAP11Arwa #13)

Expression level (WT plants)

