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Citrus Huanglongbing (HLB) also known as citrus greening is one of the most devastating diseases of citrus
worldwide. The disease is caused by Candidatus Liberibacter bacterium, vectored by the psyllid Diaphorina citri
Kuwayama and Trioza erytreae Del Guercio. Citrus plants infected by the HLB bacterium may not show visible
symptoms sometimes for years following infection. The aim of this study was to develop effective gene-specific
primer pairs for polymerase chain reaction based method for quick screening of HLB disease. Thirty-two different
gene-specific primer pairs, across the Ca. Liberibacter asiaticus genome, were successfully developed. The possibility
of these primer pairs for cross-genome amplification across ‘Ca. Liberibacter africanus’ and ‘Ca. Liberibacter
americanus’ were tested. The applicability of these primer pairs for detection and differentiation of Ca Liberibacter
spp. is discussed.

[Nageswara-Rao M, Irey M, Garnsey SM and Gowda S 2013 Candidate gene makers for Candidatus Liberibacter asiaticus for detecting citrus
greening disease. J. Biosci. 38 1–9] DOI 10.1007/s12038-013-9315-x

Citrus greening (Huanglongbing, HLB) is the most destruc-
tive disease of citrus, debilitating the productive capacity of
citrus trees wherever it is present worldwide (Halbert and
Manjunath 2004; Bové 2006). HLB has been shown to be
present internationally, from its first description in the early
1900s in China to its appearance in Florida, USA, as recently
as 2005 (Bové 2006). It is estimated that nearly 100 million
trees in 40 countries are affected by this disease especially in
Asian and Southeast Asian countries like India, China,
Indonesia, Philippines, as well as the Arabian Peninsula,
and Africa (Bové 1986; Halbert and Manjunath 2004;
Gottwald et al. 2007) and more recently in Brazil and
USA. The fast progression of the disease, in the orchards
where the bacterial inoculum or the psyllids have not been
efficiently managed, may lead to the infected tree decline in
3 to 13 years (Gottwald et al. 1989, 2007). In March 2004,
HLB was recognized for the first time in the Americas in São
Paulo State, Brazil, that resulted in removal of nearly 3
million HLB-affected sweet orange trees (NRC 2010).

Florida being the second largest citrus producer in the world,
its $9.3 billion annual economic benefit of the citrus industry
would be lost or significantly diminished due to severe
spread of HLB disease statewide (NRC 2010).

The etiologic causal agent of HLB is a fastidious, phloem-
limited, gram-negative bacterium (Garnier et al. 1984), re-
stricted to phloem sieve tubes of its natural host, citrus.
Despite several attempts, the HLB-causing bacterium has
not been obtained in pure culture (Das 2004; Li et al.
2006). Based on the nucleotide sequence of its 16S ribosom-
al RNA gene (rDNA), the HLB pathogen has been charac-
terized as a new genus belonging to the alpha subdivision of
the proteobacteria, with the Candidatus status ‘Candidatus
Liberibacter’ (Jagoueix et al. 1994). Three Candidatus spp.
of the pathogen are currently known with most widespread
being the Asian species ‘Ca. Liberibacter asiaticus’ found in
all HLB-affected countries except Africa. The African spe-
cies Ca. Liberibacter africanus and the American species Ca.
L. americanus are restricted to Africa and Brazil,
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respectively (Teixeira et al. 2005). Ca. Liberibacter asiaticus’,
a heat-tolerant species, and ‘Ca.Liberibacter africanus’, a heat-
sensitive species, are vectored by both Diaphorina citri
Kuwayama and Trioza erytreae Del Guercio, while ‘Ca.
Liberibacter americanus’, a heat-tolerant species, is vectored
only by D. citri Kuwayama (McClean and Oberholzer 1965;
Capoor et al. 1967; Bové 2006).

The typical symptoms of HLB disease are blotchy mot-
tling of leaves (NRC 2010) often resembling zinc deficiency
symptoms which leads to the typical appearance of
yellowing of shoots in the tree. The infected trees show the
open growth, stunning twig dieback appearance and severe
fruit drop (da Graca and Korsten 2004). Additionally, symp-
toms of mottling and chlorosis of leaves, and small
misshapen fruits with aborted seeds are characteristics of
HLB-infected trees. The causal agent of HLB in Florida is
Ca. Liberibacter asiaticus while both Ca. Liberibacter
asiaticus and Ca. Liberibacter americanus isolates of HLB
disease have been detected in Brazil (Bové 2006; NRC
2010). In some instances, more than one species of Ca.
Liberibacter have been observed in plants as mixed infec-
tions (Bové 2006). Primers based on 16S RNA gene have
been developed to differentiate between species of Ca.
Liberibacter. However, availability of additional marker
primer pairs to other gene loci would help ascertain the
infection by Ca. Liberibacter spp. In this study, efforts have
been made to develop various candidate gene makers spe-
cific to Ca. Liberibacter asiaticus for early detection of HLB
disease. The effectiveness of the primer pairs developed
were also tested for cross-species amplification, if any,
against the other two HLB-causing species Ca. Liberibacter
africanus and Ca. Liberibacter americanus.

Total nucleic acids from HLB-infected citrus was
extracted from 100 mg of tissue (leaf and/or inner bark tissue
from healthy as well as HLB-infected plants, Tatineni et al.
2008) and also from HLB-infected psyllids. Total nucleic
acid samples of Ca. Liberibacter africanus were kindly pro-
vided by Prof G Pietersen (University of Pietoria, South
Africa) and total nucleic acid samples from Ca.
Liberibacter asiaticus as well as Ca. Liberibacter americanus
from Brazil were kindly provided by Mr Luis Matos
(Dominican Institute of Agriculture and Forestry Research,
Dominican Republic).

Conventional PCR with SpeedSTAR HS DNA polymer-
ase (Takara Bio, WI) was used to examine the presence of
the HLB bacterium in citrus as well as psyllid samples. The
PCR reaction (20 μL volume) consisted of 1 μL of template
DNA, 0.2 μM each oligonucleotide (gene-specific forward
and reverse primers; table 1), 0.25 mM dNTPs, 1× buffer
(FBII; Takara Bio, USA), and 0.125 μL (5 U/μL) of
SpeedSTAR HS DNA polymerase. Amplification was car-
ried out using the following protocol (primer pairs 1–19,
table 1): 94°C for 2 min; followed by 10 cycles at 94°C for

10 s, 54°C for 10 s, and 72°C for 90 s; followed by 25 cycles
at 94°C for 10 s, 58°C for 10 s, and 72°C for 90 s; followed
by final extension at 72°C for 5 min. For primer pairs 20–32
(table 1), the PCR cycle was modified slightly with the
extension being carried out for 60 s instead of 90 s. PCR
reaction (15 μL) was analysed through 1.5% agarose gel in
1× Tris-acetate-EDTA buffer (40 mM Tris, 20 mM acetic
acid, 1 mM EDTA, pH 8.5) and PCR amplicons were
visualized using ethidium bromide. The PCR products were
eluted from the gel and purified using GeneClean® Kit (MP
Biomedicals, USA) following the manufacturer’s instruc-
tions and sent to core sequencing facility, Interdisciplinary
Center for Biotechnology Research (ICBR), University of
Florida, Gainesville, FL, for gene sequence confirmation.
For confirmation of Ca. Liberibacter asiaticus, Ca.
Liberibacter africanus as well as Ca. Liberibacter americanus
bacterium, the total nucleic acids samples were also screened
against HLB gene-specific 16S rDNA primer pairs devel-
oped by Teixeira et al. (2005). The HLB-free, healthy citrus
samples were used as a negative control in PCR amplifica-
tions. All the experiments were performed in triplicates and
the results obtained were reconfirmed.

Availability of increasing number of nucleotide (genome)
sequences in the public domain provides a fast and efficient
approach to develop gene-specific PCR molecular markers
(Chen et al. 2008; Soneji et al. 2010). Based on Ca.
Liberibacter asiaticus whole genome sequence information
(Duan et al. 2009; GenBank accession number NC_012985;
NZ_ABQW01000001 to NZ_ABQW01000034), 50 gene-
specific primer-pairs for HLB pathogen were developed using
the online free primer development software, PrimerQuestSM-
Integrated DNA Technologies, USA. Of the 50 primer pairs,
32 primer pairs (table 1) amplified specific amplicons from the
total nucleic acids isolated from Ca. Liberibacter asiaticus–
infected citrus plants as well as infected pysllids (figure 1). No
PCR products were amplified from the healthy citrus plants as
well as psyllids. The GenBank accession number, primer
name, loci studied, and the expected PCR product size are
mentioned in table 1. The study also successfully standardized
a common PCR thermocyler program for all the primer pairs
developed. The PCR amplicon sizes observed on the agarose
gel electrophoresis were compatible with the Ca. Liberibacter
asiaticus–infected citrus plants as well as infected pysllids. The
PCR amplification of all the primer pairs were also screened
against the Ca. Liberibacter asiaticus infected samples
obtained from Brazil and the amplicon sizes were found to
be compatible withCa. Liberibacter asiaticus infected samples
from Florida (figure 2). The amplified gene fragments from
agarose gel were gel-eluted (for both the American as well as
Brazilian Ca. Liberibacter samples), gene-cleaned
(GeneClean® Kit; MP Biomedicals, USA), sequenced and
the sequence information were reconfirmed with respect to
their GenBank accession numbers (table 1). The nucleotide
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sequences were also aligned using ClustalW2 – multiple se-
quence alignment (http://www.ebi.ac.uk/Tools/msa/clustalw2/)
and 98.5-100% sequence homology was observed between the
American and Brazilian Ca. Liberibacter samples.

Total nucleic acids from citrus infected with Ca.
Liberibacter asiaticus and Ca. Liberibacter americanus
obtained from Brazil and the Ca. Liberibacter africanus from
South Africa were reconfirmed by PCR experiments using
primer pairs HLB75(+)/HLB177T(–) (Ca. Liberibacter
asiaticus), HLB77(+)/HLB177T(–) (Ca. Liberibacter
africanus) and HLB73(+)/HLB166(–) (Ca. Liberibacter
americanus) (table 2). The PCR amplification from these
primer pairs, developed from the Ca. Liberibacter 16S

rRNA genes, allowed us for a direct identification of all the
three species.

In order to understand the cross-compatibility of the
primer pairs developed in this study, across the Ca.
Liberibacter spp., viz Ca. Liberibacter asiaticus, Ca.
Liberibacter africanus, and Ca. Liberibacter americanus,
cross-species amplification studies were carried out. Of the
32 primer pairs, only three primer pairs (1, 7, and 10; table 1;
figure 3) showed cross-genome amplification in all the three
Ca. Liberibacter spp. and three primer pairs (3, 5 and 9;
table 1) showed cross-genome amplification between Ca.
Liberibacter asiaticus and Ca. Liberibacter africanus and no
PCR product amplicons were observed for the Ca.

M        20      21     22      23      24      25      26      

M     W   1    2     3    4    5     6    7     8 M    9     10   11   12    13   14   15   16   17   18   19    

M        27     28     29               31     32     

M       20         21        22         23        24 

M       25         26         31        32        W 

A B

C D

E

Figure 1. PCR amplification of Candidatus Liberibacter asiaticus specific sequences. (A, B, C, D) In HLB infected citrus plants. (E) In
HLB infected psyllids. (The numbers in the lane corresponds to primer pairs in table 1); M: 1 kb DNA ladder; W: Water.

Figure 2. PCR amplification of Candidatus Liberibacter asiaticus samples. (A) HLB samples from Florida. (B) HLB samples from Brazil.
The numbers in the lane corresponds to primer pairs in table 1. W: water. M: 1 kb DNA ladder.
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Liberibacter americanus. High rates of transferability of mo-
lecular loci across species within a genus have been reported
(Peakall et al. 1998; Scott et al. 2001; Clauss et al. 2002;
Dirlewanger et al. 2002; Gaitán-Solís et al. 2002; Jones et al.
2002; Williamson et al. 2002; Thiel et al. 2003; Eujayl et al.
2004; Saha et al. 2004). It has also been observed that the
molecular loci may exhibit decreasing variation as the evo-
lutionary distance increases from the species used to develop
the primer pairs (Sun and Kirkpatric 1996; White and Powell
1997; Peakall et al. 1998; Roa et al. 2000; Thiel et al. 2003).
For some of the primer pairs, 1, 3 and 10, more than one
amplicon was observed. Amplification of more than one
amplicon using EST-SSR markers has been reported in
previous studies and was attributed to the possible amplifi-
cation of both orthologous and paralogous copies of the
target region (Varshney et al. 2005; Sim et al. 2009), or
homoloci from different genomes (Gupta et al. 2003; Saha et
al. 2004). The cross-genome amplicons for the primer pairs,
1, 3, 5, 7, 9 and 10 (table 1), for all the three Ca. Liberibacter
species, were gel-eluted, gene-cleaned (GeneClean® Kit;
MP Biomedicals, USA), sequenced and the sequence
information were blasted against the GenBank database.
Except the Ca. Liberibacter asiaticus for which the
primers were originally developed, no sequence homol-
ogy was observed in Ca. Liberibacter africanus, and Ca.
Liberibacter americanus for the primer pairs. Studies

have also observed loss of sequence homology when
markers developed from one species were screened on
related species (Asp et al. 2007; Sim et al. 2009; Yu et
al. 2011). While cross-amplification of different types of
molecular loci even across genera is possible, more
attention should be given to the nature of the amplified
fragments before inferring synteny or orthology in ge-
netic diversity studies (table 3). As new sequencing
technologies are emerging, longer nucleotide sequence
reads at much lower costs than what is available right
now are anticipated, making genome sequencing the
method of choice for cross-genome/genera studies
(Soneji et al. 2010; Zeid et al. 2010).

In this study, the effectiveness of the application of
PCR primer pairs specific to Ca. Liberibacter asiaticus,
causing HLB disease in citrus, was studied. In the absence of
any durable resistant citrus cultivars, the management of HLB
at least in the immediate future is to eradicate the source of
pathogen, the infected citrus trees and the transmitting psyllid
vector (Halbert and Manjunath 2004; Pelz-Stelinski et al.
2010). Management of citrus greening disease requires rapid
and large scale detection, followed by removing of infected
trees, and this practice is hindered due to lack of quick,
sensitive and large-scale detection methods. PCR-based
methods currently being used are based on the 16S rRNA gene
region (Jagoueix et al. 1997; Teixeira et al. 2005; Das et al.

Table 2. Nucleotide sequence of forward and reverse primers used for the amplification of Candidatus Liberibacter 16S rDNA (Teixeira
et al. 2005)

Serial No. Primer name Primer sequence (5′—3′) PCR product size HLB bacterium

1 HLB73 F: AGTCGAGCGAGTACGCAAGTACT 1027 bp Ca. Liberibacter americanus
HLB116 R: CAACTTAATGATGGCAAATATAG

2 HLB75 F: CGCGTATGCAATACGAGCGGCA 1027 bp Ca. Liberibacter asiaticus
HLB177T R: GCCTCGCGACTTCGCAACCCAT

3 HLB77 F: GCGCGTATTTTATACGAGCGGCA 1027 bp Ca. Liberibacter africanus
HLB177T R: GCCTCGCGACTTCGCAACCCAT

Figure 3. Cross-species amplification of Candidatus Liberibacter species. M: 1 kb DNA ladder. Gel A (primer 10 from table 1), B (primer
1 from table 1), C (primer 7 from table 1): Lane 1, Candidatus Liberibacter asiasticus from Florida; Lane 2, Candidatus Liberibacter
asiasticus from Brazil; Lane 3, Candidatus Liberibacter africanus; Lane 4, Candidatus Liberibacter americanus.

6 Madhugiri Nageswara-Rao et al.

J. Biosci. 38(2), June 2013



2007; Das 2009). Because these conserved regions are homol-
ogous to sequences of the host and/or citrus associated endo-
phytes, reliable and specific detection and diagnosis of HLB is
of concern (Lin et al. 2008). Thus, the candidate gene markers
developed in this study, across the wide genome of Ca.
Liberibacter asiaticus, will essentially benefit the citrus indus-
try by providing simple, sensitive and rapid detection method
for large-scale detection/management of HLB under field,
nursery, bud-wood certification and epidemiological condi-
tions. It will also be useful for the identification of Ca.
Liberibacter asiaticus where more than one species of HLB
pathogen is present.
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