Title:
Entomophagous insects associated to Diaphorina citri (Hemiptera: Psyllidae) in citrus orchards with different weed management systems in Papantla, Veracruz, Mexico

Journal Issue:
Journal of Citrus Pathology, 1(1)

Author:
Ortega-Arenas, L. D., Colegio de Postgraduados, Campus Montecillo, Entomología. 56230. Montecillo, Estado de México
López-López, R., Universidad Autónoma Chapingo- Agroecología, Chapingo, Estado de México, C. P. 56230. México
Lomelí-Flores, J. R., Colegio de Postgraduados, Campus Montecillo, Entomología. 56230. Montecillo, Estado de México
Gedillo-Portugal, E., Universidad Autónoma Chapingo- Agroecología, Chapingo, Estado de México, C. P. 56230. México
Gómez-Tovar, L., Universidad Autónoma Chapingo- Agroecología, Chapingo, Estado de México, C. P. 56230. México
Salazar-Cruz, J., Universidad Autónoma Chapingo- Agroecología, Chapingo, Estado de México, C. P. 56230. México
Villegas-Monter, A., Colegio de Postgraduados, Campus Montecillo, Entomología. 56230. Montecillo, Estado de México

Publication Date:
2014

Permalink:
https://escholarship.org/uc/item/9m28x9d7

Local Identifier:
iocv_journalcitruspathology_25106

Abstract:
Huanglongbing (HLB), one of the most destructive diseases of citrus worldwide, is threatening the survival of the citrus industry in Mexico. Diaphorina citri is the primary vector of HLB; thus, control of the vector it’s vital for disease management. This study was carried out to evaluate the influence of different management systems on the population psyllid density and entomophagous insects associated in orange orchards (Citrus sinensis cv. Valencia) in Papantla, Veracruz, Mexico. Five orchards with different management strategies were selected: 1) Manual and mechanical weed control and insecticide application, 2) Manual and mechanical weed control, with insecticide application, and high planting density, 3) Manual and mechanical weed control, without insecticide, 4) Constant herbicide application, without insecticide, and 5) Manual weed control, mechanical soil removal, herbicide application, without insecticide. Each orchard was sampled, monthly. Psyllids adults were captured on yellow sticky traps. Eggs, nymphs and adults of D. citri, and natural
enemies were collected on flush shoots. Results show that the diversity of weeds varied according to the handling and sampling date and was higher in orchards and dates where herbicide use was reduced or null. *Cycloneda sanguinea*, *Azya* sp., *Scymnus* sp., *Curinus* sp., and *Brachiacantha* sp. were the predators collected. There was synchrony among populations of *D. citri*, predators and abundance of flush shoots. The presence of the parasitoid *Tamarixia radiata* was minimal as a result of the low *D. citri* nymphs density. The results suggest that weeds diversity guarantee the survival of predators, because they supply alternative food resources.

Copyright Information:

Copyright 2014 by the article author(s). This work is made available under the terms of the Creative Commons Attribution 4.0 license, http://creativecommons.org/licenses/by/4.0/
Entomophagous insects associated to *Diaphorina citri* (Hemiptera: Psyllidae) in citrus orchards with different weed management systems in Papantla, Veracruz, Mexico

Ortega-Arenas, L.D.¹, López-López, R.², Lomelí-Flores, J.R.¹, Cedillo-Portugal, E.², Gómez-Tovar, L.², Salazar-Cruz, J.², and Villegas-Monter, A.¹

¹Colegio de Postgraduados, Campus Montecillo, Entomología. 56230. Montecillo, Estado de México ladeorar@colpos.mx
²Universidad Autónoma Chapingo- Agroecología, Chapingo, Estado de México, C. P. 56230. México

Huanglongbing (HLB), one of the most destructive diseases of citrus worldwide, is threatening the survival of the citrus industry in Mexico. *Diaphorina citri* is the primary vector of HLB; thus, control of the vector it’s vital for disease management. This study was carried out to evaluate the influence of different management systems on the population psyllid density and entomophagous insects associated in orange orchards (*Citrus sinensis* cv. Valencia) in Papantla, Veracruz, Mexico. Five orchards with different management strategies were selected: 1) Manual and mechanical weed control and insecticide application, 2) Manual and mechanical weed control, with insecticide application, and high planting density, 3) Manual and mechanical weed control, without insecticide, 4) Constant herbicide application, without insecticide, and 5) Manual weed control, mechanical soil removal, herbicide application, without insecticide. Each orchard was sampled, monthly. Psyllids adults were captured on yellow sticky traps. Eggs, nymphs and adults of *D. citri*, and natural enemies were collected on flush shoots. Results show that the diversity of weeds varied according to the handling and sampling date and was higher in orchards and dates where herbicide use was reduced or null. *Cycloneda sanguinea*, *Azya* sp., *Scymnus* sp., *Curinus* sp., and *Brachiacantha* sp. were the predators collected. There was synchrony among populations of *D. citri*, predators and abundance of flush shoots. The presence of the parasitoid *Tamarixia radiata* was minimal as a result of the low *D. citri* nymphs density. The results suggest that weeds diversity guarantee the survival of predators, because they supply alternative food resources.