Title:
Progress on Dissecting and Controlling the Citrus Huanglongbing Complex

Journal Issue:
Journal of Citrus Pathology, 1(1)

Author:
Duan, Yongping
Zhou, Lijuan
Zhang, Muqing, USDA-ARS-USHRL, Fort Pierce, Florida 34945, USA
Benyon, Lesley, USDA-ARS-USHRL, Fort Pierce, Florida 34945, USA
Armstrong-Vahling, Cheryl, USDA-ARS-USHRL, Fort Pierce, Florida 34945, USA
Hoffman, Michele
Hao, Guixia, USDA-ARS-USHRL, Fort Pierce, Florida 34945, USA
Zou, Huasong, USDA-ARS-USHRL, Fort Pierce, Florida 34945, USA
Doud, Melissa, USDA-ARS-USHRL, Fort Pierce, Florida 34945, USA
Ding, Fang, USDA-ARS-USHRL, Fort Pierce, Florida 34945, USA
Morgan, Kent, USDA-ARS-USHRL, Fort Pierce, Florida 34945, USA

Publication Date:
2014

Permalink:
https://escholarship.org/uc/item/3n7247qg

Author Bio:
USDA-ARS-USHRL, Fort Pierce, Florida 34945, USA

Local Identifier:
io cv_journalcitruspathology_25120

Abstract:
Citrus huanglongbing (HLB) is a century-old and emerging disease that impedes citrus production worldwide. 'Candidatus Liberibacter asiaticus' (Las) is the globally prevalent species of HLB bacteria. Here we describe our molecular characterizations of Las, and our newly-developed control methods for citrus HLB. From a genomics standpoint, we revealed Las has a significantly reduced genome (1.26Mb) and unique features adapted to its intracellular life style. Although the genome is small, Las contains at least two prophages that make up ca. 1/16 of the entire genome. Frequent recombination and reassortment of these prophages/phages may contribute to Las’s evolving diversity and plasticity. There are at least 9 different types of Las populations
that may co-exist in a single infection, but some exist preferentially in different hosts and different geographical locations. Furthermore, different Las populations may account for titer variations, such as the extreme low titer of Las bacteria (detected by our qPCR method) from seed-transmitted citrus and infected *Murraya paniculata*. From a functional genomics standpoint, we revealed Las encodes a functional ATP translocase and acts as an “energy parasite”. To modulate host energy biosyntheses and/or defense responses, Las encodes two novel autotransporter proteins that target to mitochondria. To compete for the limited zinc nutrient, Las encodes a ZuABC high affinity zinc uptake system. To avoid host defense machinery, Las encodes a functional flagellin that slowly triggers the citrus basal defense response. Although HLB is extremely difficult to manage, our newly-developed thermotherapy and chemotherapy methods provide potential components of an integrated control strategy for this devastating disease. In addition to the molecular characterization of the Las bacterium and its responses to stress, we have also revealed the dynamics of the microbial community (over 7000 OTUs—“species”) in HLB-affected citrus plants and how the microbial community responds to antibiotic treatments and seasonal variations.

Copyright Information:

Copyright 2014 by the article author(s). This work is made available under the terms of the Creative Commons Attribution 4.0 license, http://creativecommons.org/licenses/by/4.0/
Progress on Dissecting and Controlling the Citrus Huanglongbing Complex


USDA-ARS-US HRL, Fort Pierce, Florida 34945, USA

Citrus huanglongbing (HLB) is a century-old and emerging disease that impedes citrus production worldwide. *Candidatus Liberibacter asiaticus* (Las) is the globally prevalent species of HLB bacteria. Here we describe our molecular characterizations of Las, and our newly-developed control methods for citrus HLB. From a genomics standpoint, we revealed Las has a significantly reduced genome (1.26Mb) and unique features adapted to its intracellular life style. Although the genome is small, Las contains at least two prophages that make up ca. 1/16 of the entire genome. Frequent recombination and reassortment of these prophages/phages may contribute to Las’s evolving diversity and plasticity. There are at least 9 different types of Las populations that may co-exist in a single infection, but some exist preferentially in different hosts and different geographical locations. Furthermore, different Las populations may account for titer variations, such as the extreme low titer of Las bacteria (detected by our qPCR method) from seed-transmitted citrus and infected *Murraya paniculata*. From a functional genomics standpoint, we revealed Las encodes a functional ATP translocase and acts as an “energy parasite”. To modulate host energy biosyntheses and/or defense responses, Las encodes two novel autotransporter proteins that target to mitochondria. To compete for the limited zinc nutrient, Las encodes a ZuABC high affinity zinc uptake system. To avoid host defense machinery, Las encodes a functional flagellin that slowly triggers the citrus basal defense response. Although HLB is extremely difficult to manage, our newly-developed thermotherapy and chemotherapy methods provide potential components of an integrated control strategy for this devastating disease. In addition to the molecular characterization of the Las bacterium and its responses to stress, we have also revealed the dynamics of the microbial community (over 7000 OTUs-“species”) in HLB-affected citrus plants and how the microbial community responds to antibiotic treatments and seasonal variations.