Comparative proteomic analysis between fifth-instar nymphs and adults of Asian citrus psyllid *Diaphorina citri*

IBRAHIM EL-SHESHENY^{1,2}, IBRAHIM EL-HAWARY², IBRAHIM MESBAH² and NABIL KILLINY¹

¹Entomology and Nematology Department, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, U.S.A. and ²Department of Plant Protection, Faculty of Agriculture, Tanta University, Tanta, Egypt

Abstract. Asian citrus psyllid *Diaphorina citri* Kuwayama is extremely problematic worldwide, particularly where Huanglongbing (HLB) disease, the most serious and devastating of citrus diseases, is found. The threat is a result of its ability to transmit the causal agent of HLB, Candidatus Liberibacter asiaticus (CLas) bacterium. Improvements in proteomics, mass spectrometry, bioinformatics tools and gene ontology annotation facilitate the mapping and large-scale identification and quantification of proteins. To date, only a few comparative proteomic studies report the developmental proteomic changes of hemimetabolous and plant-disease vector insects. Two-dimensional gel electrophoresis analysis of D. citri total protein is able to detect qualitative and quantitative developmental differences. Liquid chromatography-tandem mass spectrometry identifies 89 protein spots. Most proteins are metabolism and bioenergetics-related. Nineteen protein spots are found to be implicated in stress/defence/immunity; 7 in development regulation; 9 in nervous system functions; 4 in the reproductive system; 23 in cytoskeleton and muscle organization; and 4 in movement, flight and other processes. Significant increases in the level of proteins related to structural constitution of the skeleton, stress/defence/immunity, reproduction system, muscles, locomotion and flight are found in adults, consistent with the fact that D. citri is a hemimetabolous insect, whereas proteins involved in developmental regulation are higher in the nymphal stage. The identification of these variably expressed proteins between the nymph and adult stages, linked with the basis of their physiological roles, will lead to a better understanding of the factors influencing development in D. citri and the regulation of some crucial metabolic pathways. It may also help to identify targets for genetic manipulation using RNA interference or other techniques to disrupt Asian citrus psyllid development, lifespan or its ability to transmit CLas.

Key words. Asian citrus psyllid, *Diaphorina citri*, 2-DE electrophoresis, LC-MS/MS, metamorphosis, proteomic analysis.

Introduction

Asian citrus psyllid *Diaphorina citri* Kuwayama is a phloem sap-sucking insect belonging to Sternorrhyncha, superfamily Psylloidea and family Psyllidae (Bové, 2006). Nymphs and adults suck phloem sap from the foliage causing leaf distortion and curling. Furthermore, the psyllid produces huge amounts

Correspondence: Nabil Killiny, Entomology and Nematology Department, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, U.S.A. Tel.: +1 863 956 8833; e-mail: nabilkilliny@ufl.edu of honeydew, which cause the heavy development of sooty mold on honeydew-covered leaves. Also, it injects toxins that cause malformation of leaves and shoots during feeding on the phloem sap. Asian citrus psyllid transmits *Candidatus* Liberibacter asiaticus (*CLas*) bacterium, the putative causal agent of citrus greening, which is also called Huanglongbing (HLB) (Grafton-Cardwell *et al.*, 2005; Bové, 2006).

Two-dimensional gel electrophoresis (2-DE) allows separation of complex protein mixtures, visualization of these differences in the gel, and then the selection and identification of the proteins via mass spectrometry (MS). The use of a combination of these technologies provides information that helps to begin answering a wide range of interesting biological questions (Ong & Pandey, 2001). Although numerous successes of DNA-based approaches to monitor gene expression are reported, in many studies mRNA is not a reliable indicator of protein abundance in cells (Gygi *et al.*, 1999).

Initially, differential proteomics was used to identify changes in protein expression between the normal status compared with a specified status such, as healthy and diseased; subsequently, its use is now widely reported for identifying toxicity biomarkers and induced immunity, discovering resistance mechanisms and providing new insights into complex mechanisms in many organisms (Kennedy, 2002; Sharma et al., 2004; Shi & Paskewitz, 2006; Nguyen et al., 2008). In several insect studies, proteomics has emerged as a powerful method for gaining insight into many physiological changes at the cellular level (Nyström, 2005; Seehuus et al., 2006; Zheng et al., 2011). The technique is reported to have successfully been used with many insects, particularly silkworm, mosquito, honeybee, fruit fly and cotton bollworm (Li et al., 2014). Most studies focus on insect immunity (Shi & Paskewitz, 2006), immunity-related proteins (e.g. in Bombyx mori and Drosophila melanogaster; Vierstraete et al., 2004; Zhang et al., 2014), and exposure to toxic compounds such as cadmium, carbamates, bio-toxins (such as cry11Aa from Bacillus thuringiensis) and other pesticides (Sharma et al., 2004; Cancino-Rodezno et al., 2012; Wu et al., 2013). Also, the innate immunity of insect vectors of human disease is receiving increased attention for blocking the transmission of important diseases such as malaria (Christophides et al., 2002). In the study of plant diseases, proteomic and bioinformatics sciences enable the exploration of several aspects of interactions between vector insect-plant pathogen (Elzinga & Jander, 2013).

Furthermore, with the increase of bioinformatics tools, gene ontology annotations and information from different organisms' datasets, many studies have turned away from investigating the principles of insect development via classical genetics analyses and have instead moved toward molecular biology approaches (Carmena, 2009). This facilitates the mapping and the large-scale identification and quantification of proteins, the study of their post-translational modifications, the analysis of protein-protein interactions (PPIs), as well as in vivo studies of protein expression, aiming to identify functional protein networks (Carmena, 2009). Metamorphosis, a process that enables insects to develop from one stage to another, consists of extensive morphological and physiological changes. The developmental proteomic changes associated with holometabolous insects receive more attention than those of hemimetabolous insects because of the additional larval and pupal stages. Developmental protein mapping of typical model insects such as the fruit fly, silkworm and honeybee is also extensively reported (Vierstraete et al., 2004; de Morais Guedes et al., 2005). Silkworm haemolymph proteins change markedly from the larval to moth stages. The identified proteins are involved in the processes of food digestion, nutrient storage and transport and metabolism (Hou et al., 2010).

On the other hand, hemimetabolous insects, such as Asian citrus psyllid, undergo incomplete metamorphosis, passing through only three stages; eggs, nymphs and adults. The nymphal stages somewhat resemble the adult form morphologically, although adults have fully developed wings, muscles, skeletal structures and mature reproductive systems. During the nymphal stage, *D. citri* passes through five instars. Proteomic study of the last instar (fifth instar) could reveal proteomic changes associated with maturation into the adult stage. Surprisingly, to date, there are few reported comparative proteomic studies on the developmental proteomic changes of hemimetabolous and plant–disease vector insects. To understand the molecular mechanisms of development in *D. citri*, 2-DE is used in combination with liquid chromatography-tandem MS (LC-MS/MS) to analyze total proteins of the fifth-instar nymph and adult stage.

It is hypothesized that proteins involved in structural constitution of skeleton, reproduction system and flight muscles would show greater abundance in adults compared with nymphs. By contrast, proteins involved in developmental regulation would be more abundant in the nymphal stages.

Determining the differences in protein profiles between *D. citri* nymphs and adults will help to identify the proteins that are up- or down-regulated during structural development and metamorphosis, to determine their physiological roles, and possibly to identify targets for genetic manipulation using RNA interference (RNAi) or other techniques that disrupt Asian citrus psyllid development, lifespan or its ability to transmit *C*Las.

Materials and methods

Asian citrus psyllid culture

Asian citrus psyllid colonies were reared on small sweet orange (Valencia) trees inside mesh cages in controlled environment growth rooms under an LD 16:8 h photocycle at 25 ± 2 °C and $60\% \pm 5\%$ relative humidity. Citrus trees were obtained from an insect-proof, temperature-controlled greenhouse (LD 16:8 h photocycle at 28 °C and 40% relative humidity). Nymphs of *D. citri* were collected from the plants and placed into in Petri dishes using a #4 camel hair brush. Nymphs were then classified to stages based on the morphological features (Grafton-Cardwell *et al.*, 2005). The fifth-instar nymphs were gathered in Eppendorf tubes and kept at -20 °C. For *D. citri* adults, fifth-instar nymphs were collected (at the same age, approximately 15 days old) using a manual insect aspirator and stored at -20 °C.

Protein extraction and preparation

Insect samples were placed in 1.5-mL Eppendorf tubes. Each tube consisted of 50 adult psyllids or 100 *D. citri* fifth-instar nymphs. Each tube was considered as one biological replicate. Five biological replicates were analyzed for both adult psyllids and fifth-instar nymphs. The samples were homogenized using plastic pestles and then 500 μ L of lysis buffer (0.2% Hepes and 10% sucrose; w/v) was added. Samples were homogenized again with the buffer for 10 min then centrifuged at 8500g for

10 min at 4 °C. The supernatant was transferred to another tube and three volumes of cold 10% trichloroacetic acid in acetone were added (stored at -20 °C). Samples were kept at -20 °C at least for 2 h then centrifuged at 14 500g for 20 min at 4 °C. The protein pellet was washed using cold acetone (-20 °C) three times (2 h each). The protein pellet was cleaned using a 2-DE clean up kit in accordance with the manufacturer's instructions (Bio-Rad, Hercules, California). The cleaned protein samples were stored in -80 °C.

Two-dimensional gel electrophoresis and staining

The total protein of *D. citri* adults and nymphs were separated by 2-DE in accordance with the manufacturer's instructions with some modifications (Bio-Rad). Briefly, protein samples were dissolved in rehydration solution [7 M urea, 2 M thiourea, 60 mM dithiothreitol (DTT), 65 mM Chaps, 2% TritonX-100, 0.2% IPG buffer (ampholytes pH 5–8), 0.5 μ L of 1% bromophenol blue]. Protein concentration was measured with Smartspec 3000 spectrophotometer (Bio-Rad) in accordance with the Bradford method (Bradford, 1976) using the Bio-Rad protein assay kit (Bio-Rad). Each sample was adjusted to contain 500 μ g of proteins for colloidal Coomassie (G250) staining in 300 μ L of rehydration solution.

The solution was loaded onto a ReadyStrip 17-cm immobilized pH gradient (IPG) strip (linear, pH 5-8) (Bio-Rad) and was actively rehydrated for 14 h at 20 °C with 50 V. Isoelectric focusing electrophoresis was performed using Bio-Rad Protean II cell (Bio-Rad). The program used was: step 1: 100 V, slow, 1 h; step 2: 200 V, slow, 1 h; step 3: 300 V, slow, 1 h; step 4: 500 V, slow, 3 h; step 5: 1000 V, slow, 3 h; step 6: 5000, slow, 3 h; step 7: 10 000 V, linear, 4 h; step 8: 10 000 V, rapid, 80 000 Vh, step 9: 500 V, rapid, hold. The current was limited to $50 \,\mu A \, \text{strip}^{-1}$. After isoelectric focusing electrophoresis, the IPG strips were equilibrated in equilibration buffer I [6 M urea, 20% glycerol, 2% sodium dodecylsulphate (SDS) and 0.375 mM Tris-HC1, pH 8.8] containing 2% (w/v) DTT for 20 min. with gentle shaking and then for another 20 min in equilibration buffer II (1% DTT replaced with 2.5% iodoacetamide). The strip and marker $(15 \,\mu\text{L of marker with } 15 \,\mu\text{L of agarose gel at 4 °C})$ was loaded onto a 10% SDS-polyacrylamide gel (1.5 mm gel thickness) in the Protean II xi Cell (Bio-Rad). Gels were made the day before and kept at 4 °C until use. Loaded gels were covered with melted agarose then placed into the electrophoresis tank containing 1×running buffer (25 mM Tris, 192 mM glycine, 0.1% SDS). Electrophoresis was conducted at constant current, and the program was 5 mA gel^{-1} for 50 min, then 30 mA gel^{-1} until the bromophenol blue dye front reached the edge of the gels.

Protein visualization and gel image analysis

Protein was visualized by colloidal Coomassie brilliant blue staining, followed by silver staining (Candiano *et al.*, 2004). Gels were stored in 20% ethanol at 4 °C until the analysis.

The stained gel was scanned at a resolution of 600 dpi. Spot detection, matching and quantitative intensity analysis were performed using MELANIE, version 7.0 (Gene-Bio, Switzerland)

and quantification values for each detected spot were calculated using: (i) optical density (OD), the highest calibrated pixel intensity in the spot; (ii) Area, the spot's area in mm²; (iii) Vol, the spot's volume (Vol = OD × Area), which represents integration of OD over the spot's area; and (iv) %Vol, the relative Vol (i.e. the Vol divided by the total Vol for total spots in the image). Differentially expressed protein spots were selected and subjected to identification by LC-MS/MS.

LC-MS/MS and database searches

LC-MS/MS analysis was carried out at the Interdisciplinary Center for Biotechnology Research (University of Florida, Gainesville, Florida) using an LTQ Orbitrap XL mass spectrometer (ThermoFisher Scientific, West Palm Beach, Florida). Proteins spots of interest were excised from the gels (nymph and adult) and analyzed by LC-MS/MS as described previously (Salganik *et al.*, 2012; Chavarria *et al.*, 2014). Briefly, the samples were digested enzymatically with trypsin, and the peptides were injected onto a capillary trap (LC Packings PepMap), desalted for 5 min with 0.1% (v/v) acetic acid at a flow rate of $3 \,\mu L \,min^{-1}$ prior, then loaded onto an LC Packing[®] C18 PepMap nanoflow high-performance liquid chromatography column (ThermoFisher Scientific).

For the protein search algorithm, raw data were analyzed with MASCOT, version 2.2.2 (Matrix Science, U.K.). SCAFFOLD, version 3.0.9.1 (Proteome Software, Inc., Portland, Oregon) was used to validate MS/MS-based peptide and protein identifications. Mascot was searched with a fragment ion mass tolerance of 0.8 Da and a parent ion tolerance of 10 ppm. Mascot was set to search the metazoan database from NCBI assuming the digestion enzyme trypsin. Iodoacetamide derivative of Cys was indicated as a fixed modification, whereas deamidation of Asn and Gln, oxidation of Met, and isopeptide linkage to Gly-Gly were specified as variable modifications. For MS/MS-based peptide and protein identifications, SCAFFOLD, version 3.6 (Proteome Software Inc.) was used for validation. The Peptide Prophet algorithm was used to identify peptides using a 95% probability (Keller et al., 2002). Similarly, proteins were identified using Protein Prophet and accepted at a 95% probability if two or more unique peptides were identified in accordance with Nesvizhskii et al. (2003).

Results

Qualitative analysis of Asian citrus psyllid adults and nymphs proteins

The 2-DE showed that the overall number of total protein spots increased from the fifth-instar nymph to the adult stage. Representative colloidal Coomassie brilliant blue stained 2-DE gels of total proteins extracted from adult and fifth-instar nymphs are shown in Figure 1.

Overall, comparative analysis of the 2-DE protein maps revealed 344 ± 14 and 273 ± 18 protein spots with a 70% match ratio average in adults and nymphs, respectively. The

Fig. 1. Two-dimensional gel comparison of total proteins isolated from fifth-instar nymphs and adults of the Asian citrus psyllid *Diaphorina citri*. Immobilized pH gradient strips of linear pH 5-8 were used for isoelectric focusing and the sodium dodecyl sulphate-polyacrylamide gel electrophoresis was performed in 10% acrylamide. Protein molecular weight standards are shown on the left. Spots of statistically significant difference (P < 0.05) between nymph and adult stages were selected to be analyzed and identified using liquid chromatography-mass spectrometry.

expression levels of some proteins were dramatically changed (Fig. 1).

Class analysis indicated that the intensity of 181 protein spots was significantly different between adults and fifth-instar nymphs. Ninety-three protein spots were up-regulated from nymphs to adults from nymphs to adults and, among them, 49 spots increased by more than two-fold. Additionally, 88 protein spots were down-regulated and, among them, 43 spots decreased by more than two-fold. Furthermore, 165 and 112 protein spots were found only in adults or in nymphs, respectively. Protein spots with significant changes were selected for identification using MS analysis.

Identification of differentially expressed proteins by MS

From a total of about 181 protein spots that were significantly different between the life stages, 98 protein spots were excised and numbered as shown in Figure 1. Partial images of some of the areas containing selected proteins from the proteomic maps are shown enlarged in Figure 2. Twenty-five of the identified proteins were consistently up-regulated from the fifth-instar nymph to the adult stage. These are the spots numbered 3, 5, 13, 15, 17, 23, 24, 26, 27, 28, 34, 36, 37, 40, 42, 45, 52, 54, 56, 59, 61, 64, 72, 74 and 80 (Fig. 1 and Table 1), whereas 23 protein spots showed up-regulation (by more than two-fold) in adults compared with nymphs. In some instances, the same protein was detected in several spots (Table 1). For example, triose phosphate isomerase was identified from spots 1 and 44; glyceraldehyde 3-phosphate dehydrogenase was found in spots 3, 19, 25, 74 and 91; arginine kinase was found in spots 3, 4 and 5. Phosphoglycerate kinase was found in spots 8

and 9; and phosphoglycerate mutase was found in spots 17, 18 and 38 (Table 1). From nymph to adult stage, 12 proteins were down-regulated (by more than 0.5-fold) (Table 1). Fifteen identified protein spots existed only in adults (spots 83–98).

Functional classification of identified proteins

The identified proteins are known to participate in a variety of biological processes (Table 1). Among the 98 identified 2-DE spots, most were proteins assigned to metabolism and bioenergetics processes (protein, lipid, carbohydrate and nucleotide metabolism, oxidation-reduction process, glycolytic process and proton transport). Forty-seven proteins are putatively involved in lipid and carbohydrate metabolic processes (33 up-regulated), 12 in glycolytic processes (11 up-regulated), 22 in nucleotide metabolic processes (16 up-regulated) and 14 in proton transport (10 up-regulated). The functions of the other three proteins are currently unknown.

Nineteen proteins were found to be implicated in stress/defence/immunity (13 up-regulated), 7 in development regulation (5 down-regulated), 9 in nervous system functions (6 up-regulated), 4 in the reproductive system (3 existed only in adult Asian citrus psyllid and the fourth one was up-regulated), 23 in cytoskeleton and muscle organization (20 up-regulated), and 4 in movement and flight (3 up-regulated) and other processes (Figs 1 and 2). Functionally, most identified proteins are implicated in catalytic activity, binding, ion transport, antioxidant activity, oxidoreductase activity, cofactor or enzyme regulation, and as structural constituents of the skeleton (Fig. 3). The subcellular components of most identified proteins are cytoplasmic and cytoskeleton proteins

Fig. 2. Comparison between selected regions of two-dimensional gel electrophoresis gels of total proteins isolated from fifth-instar nymphs and adults of the Asian citrus psyllid *Diaphorina citri*. The original location of each selected area (A-L) is indicated on the total protein gel in Figure 1.

and 73% of them were up-regulated in adults but not nymphs (Fig. 3).

Gene ontology annotation

Gene Ontology (GO) annotation analysis of the 98 proteins (S = spot; hence S1 to S98) indicated that they are involved in several molecular functions and biological processes and belong to varied cellular components (Fig. 3). Most identified proteins were implicated in nucleotide binding, energy metabolism, glycolytic and protein processes, lipid and carbohydrate metabolic processes. Proteins such as triose phosphate isomerase (S1, S44: more than 1.7-fold), glyceraldehyde 3-phosphate dehydrogenase (S3, S19, S25, S91: up to 2.2-fold), arginine kinase (S5, S6, S7: up to 2.3-fold) and isocitrate dehydrogenase NAD-dependent (S7, S87: 7.5-fold) were increased from nymph to adult stage. Most of these proteins were mitochondrial proteins (Table 1). Phosphoglycerate kinase (S8, S9) was up-regulated by 16-fold in adults. ATP synthase subunits were up-regulated in adults in most spots (S10, S29, S30, S31, S35, S37, S45) and slightly down-regulated in adults in spot

			NCBI	ц. Ст.	ace qL	Destain	Company	E « « lucius mismo	Intensity				
Spot #	Protein ID	Organism	Accession #	EAP. PI/MW	PI/MW	Prob. (%)) coverage (%)	peptide sequences	Adult N	ymph F	old change	Subcellular component	Functions
_	Triose phosphate isomerase, partial	Lestes congener	gi:46909449	6.1/25.7	5.6/22.9	100%	15%	TASPEQAQEVHAQLRK VVLAYEPVWAIGTGK	0.647 0.	326 1	66	Cytoskeleton	Isomerase activity, gluconeogenesis, glycolytic process, metabolic process,
7	Spermine synthases	Drosophila ananassae	gi:194746211	6.2/29.2	5.3/32.2	100%	5%	KVLIVGGGDGGVAR VLIVGGGDGGVAR	0.106 0.	060 1	.76	Cytosol	catatytuc activity Transferase activity, metabolic process, catalytic activity, hisonomatice
e	Glyceraldehyde 3-phosphate dehydrogenase	Hypena proboscidalis	gi:307643669	6.2/32.8	6.5/22.6	100%	28%	KVIIS APSADAPMFVCGVNLDAYDPSFK VIISAPSADAPMFVCGVNLDAYDPSFK VISNASCTTNCLAPLAK VPVANVSVVDLTVR	0.341 0.	278 1	23	Cytoplasm, cytoskeleton, lipid particles	bydrogenase (NAD+) Dehydrogenase (NAD+) (phosphorylating) activity, oxidoreductase activity, metabolism and bioenergetic, musch develomment
4	Arginine kinase, partial	Diaphorina citri	gi:296278819	5.9/37.3	5.5/27.9	100%	36%	EGDRFLQANACR GQFYPLTGMTK LIDDHFLFKEGDR NWGDVDSFANLDPNGF-VISTR SLQGYPPPCLTEAQYKEMEEK VSTL3GLEGELKG0PYPTTGMTK	0.498 0.	216 2	31	Extracellular, cytoplasm, plasma membrane	Kinase activity, transferase activity, catalytic activity, phosphorylation, ATP-binding, nucleotide binding
ις.	Arginine kinase, partial	Diapharina citri	gi:296278819	6.2/37.3	5.5/27.9	100%	49%	EGDRFLQAANACR GIYHNDNK GQFYPLTGMTK KTDKHPPK LLDDHFLFREGR MVDQATLDKLEGGFAK NWGDVDFFANLDPUGFFVISTR SLQGYPFNPCLTEAQYKEMEEK VSSTLSGLEGELKGQFYPLTGMTK	0.359 0.	295 1	22	Extracellular, cytoplasm, plasma membrane	Kinase activity, transferase activity, catalytic activity, phosphorylation, ATP-binding, nucleotide binding
Q	Arginine kinase, partial	Diaphorina citri	gi:296278819	6.1/37.2	5.5/27.9	100%	40%	EGDRFLQAANACR GQFYPLTGMTK KTDKHPPK LLIDDHFLFKEGDR NWGDVDSFAALDDPNGFFVISTR SLQCYPFNPCLTFAQYKEMEEK YSSTLSGLEGUEKQQFYPLTGMTK VSSTLSGLEGUEKQQFYPLTGMTK	1.432 0.	846 1	69	Extracellulur, cytoplasm, plasma membrane	Kinas activity, transferase activity, catalytic activity, phosphorylation, ATP-binding, nucleotide binding
٢	Isocitrate dehydrogenase NAD-dependent	Drosophila ananassae	gi 194762984	5.8/39.3	6.8/40.7	100%	20%	DLANFTALLLSAVMMLR EFNLYANVRPCR EFNLYANVRPCR EFNLYANVRCR GPLMTPVCK MSDGLFLR SLNLALRK SLNLALRK	0.270 0.	036 7	54	Mitochondria, cytoskeleton, lipid particles	Isocitrate dehydrogenase (NAD+) activity, oxidoreductase activity, NAD binding, magnesium ion binding, tricarboxylic acid cycle, cofactor
×	Phosphoglycerate kinase	Aedes aegypti	gi:15421103	6.9/44.3	6.9/43.9	100%	%6	FYVEBECK LGDLYVNDAFGTAHR VADKIQLIENLLDK	1.574 0.	096 1	6.39	Cytoplasm, cytoskeleton	ATP binding, kinase activity, transferase activity, glycolytic process, nervous system, muscle development
6	Unknown: phosphoglycerate kinase family	Dendroctonus ponderosae	gi 332376933	6.7/44	6.9/44.7	100%	%6	AHSSMLGEGFQQR ASGFLLKK GATTIIGGGDTATCAAK	0.303 0.	165 1	.84	Cytoplasm, cytoskeleton	ATP binding, kinase activity, transferase activity, glycolytic process, nervous system, muscle

Table 1. Proteins identified from adults and fifth-instar nymph of Asian citrus psyllid Diaphorina citri using a combination of two-dimensional chromatography and liquid chromatography-tandem mass

Table	e 1. Continued.												
			NCBI	Exp.	Theor.	Protein	Sequence	Exclusive unique	Intensity				
Spot #	Protein ID	Organism	Accession #	PI/MW	PI/MW	Prob. (%)	coverage (%)	peptide sequences	Adult N	ymph F	⁷ old change	Subcellular component	Functions
10	ATP synthase subunit β	Camponouts floridanus	gi 307181472	6.2/49.3	5.3/55.1	100%	27%	AHGGYSVFAGVGER AIAELGIYPAVDPLDSTSR FIS.QPPQVASVPTLDSTSR FTQAGSEVSALLGR INVIGPIDER INDPNIGAEHYVIAR INDPNIGAEHYVIAR INDPNIGAEHYVIAR INDPNIGAEHYVIAR TLAAMHCFEGI VP	0.519 0	081	88	Mitochondria, membrane, catalytic domain, lipid particles	ATP synthesis from ADP, hydrogen ion transport, neleoide-binding, metabolic process. ATP hydrolysis coupled proton transport, ATP synthesis coupled proton transport
=	Putative enolase protein, partial	Cycloplasis panicifoliella	gi 440210869	6.3/49.2	5.3/40.9	100%	20%	EIDEFWIKLDGTENK HLADLAGNSNIILPVPAFNVINGGSHAGNK KACNCLLLK LDGTENSSK QNGWGTWSRR OSSETVDOKEIDEFWIKLDGTENK	1.119 0	344	3.26	Cytoplasın, lipid particle, plasma membrane	Glycolytic process, phosphopyruvate hydratase complex, magnesium ion binding, phosphopyruvate hydratase activity, cofactor, bioenerectic
12	ATPase, VI complex, subunit B	Drosophila pseudoobscura pseudoobscura	gi 125773061	6.5/51.8	5.3/54.5	100%	22%	AVVGFEATPDDLJALFLTK AVVQYFEGTSGIDAK EEVPGRR HVLATDMSSYAEALR IPISSAGLPHNELAQICR TYSSUNGRLAILDEVKFPK	0.588 0	.166	5.4	Mitochondria, membrane, lipid particles	Hydrogen in transport, hydrolase activity, ATP metabolic process, proton-transporting V-type ATPase, V1 domain, ATP binding, acting on acid anhydrides, catality in activities and metabolism
13	Serine carbox ypeptidase	Aedes aegypti	gi 157113687	6.7/68.7	6.5/53.8	%86	2%	NESIALKR	0.166 0	118	.40	Membrane, extracellular, cytoplasm	Hydrolase, protease, glycoprotein, zymogen, serine-type carboxypeptidase activity, structural, metabolic, stress defence and immurity
14	Glutathione S-transferase-like protein	Diaphorina citri	gi 110456486	6.7/23	5.7/21	100%	35%	AREALDFAEK GLILHEIIASPPVR GLILHEIIASPPVRAVK LCLTFIGLBAEYK LHFDSGVLFSALR NEKEIPEDKLR	0.371 0	660.	3.74	Cytoplasm, cytosol	Catalytic, condereductuse, transferase activity, metabolic process, stress defence and immunity
15	Thioredox in peroxidase	Ostertagia ostertagi	gi 18152531	6.6/23.5	6.1/21.4	100%	10%	GLFIIDPK QITVNDLPVGR	0.174 0	.126 1	1.38	Cytoplasm, cytoskeleton, cytosol	Oxidoreductase, peroxidase, peroxiredoxin activity, antioxidant, metabolic, stress, defence and immunity
16	Hetero geneous nuclear ribonucleoprotein 87f (hrp36.1)	Drosophila melanogaster	gi 1 1036	6.7/25.8	9.1/39.7	100%	3%	KLFIGGLDYR	0.109 0	.033	536	Cytoplasm, nucleus	Female gonad development, mitotic nuclear division, neurogenesis, regulation of alternative mRNA splicing, response to heat, response to starvation, mRNA binding, nucleotide binding, secuence-snecific DNA binding
1	Phosphogly ceromutase	Danaus plexippus	gi 357628288	8.72/9.9	5.9/27.8	100%	23%	HGESEWNOK HYGGLTGLNK KILLAAHGNSLR RSFDIPPPAMEK TLPYWNNVIVPQIK	0.209 0	161.	60.	Cytoskeleton, Z dise, M band	Somatic muscle development, phosphoglyceromutase activity, glycolytic process, isomerase, glycolysis, metabolic process, intercellular transferase activity, phosphotransferase

Table 1. Continued.

			NCBI	ЦХН	Theor	Drotain	Samenca	Evelucius unions	Intensity				
Spot #	Protein ID	Organism	Accession #	PI/MW	PI/MW	Prob. (%)	coverage (%)	peptide sequences	Adult 1	Vymph	Fold change	Subcellular component	Functions
18	Phosphoglyceromutase	Drosophila melanogaster	gi 111145313	6.9/28	0/28.9	100%	12%	HGESEWNOK HYGGLTGLNK ILJAAHGNSLR RILJAAHGNSLR	0.663	0.039	17.21	Cyroskeleton, Z disc, M band	Somatic muscle development, phosphoglyceromutase activity, glycolytic process, isomerase, glycolysis, metabolic process, intercellular transferase activity, photohorumaferase activity.
61	Glyceraidhyde 3-phosphate dehydrogenase	Hypena pmboscidalis	gi 307643669	7.7/32.7	6.6/22.6	100%	41%	KVIISAPSADAPMFVCGVNLDAYDPSFK LISWYDNEYGYSNR VIPALNGKLTGMAFR VISNASCTTNCLAPLAK VPVANVSVVDLTVR	4.709	.661	2.83	Cytoplasm, cytoskeleton, lipid particles	C prosproutances con- construction of the second of the se
20	Putative acid phosphatase 1, partial	Diaphorina citri	gi 110456445	7.2/38.8	6.7/41	100%	17%	AQFAQGEFLR IIEDTNDKLSGR RPYDSFLGDR TPADTYPNDPYAK YOGELDNVFRVREVR	0.582 ().366	1.59	Membrane	Acid phosphattse activity, deplosphorylation, catalytic activity, stress, defence and immunity
21	Fructose-bisphosphate aldolase-like isoform 1	Acyrthosiphon pisum	gi 193591901	6.8/39.5	6.9/39.9	100%	19%	ALNDHHVYLEGTILKPNMVTPGQSASK DGCHFAK DLAADESVSTMGKR VTEFVLAAVYK YASICOANR	0.252 (0.067	3.75	Cytoskeleton	Glycolytic process, fractose-bisphosphate aldolase activity, lyase, metabolism, glycolytic
22	AICARFT transformylase/IMP cyclohydrolase PURH	Drosophila ananassae	gi 194745622	7.6/59.5	7.8/63.4	%66	2%	NGQVIGIGAGQQSR	0.115	0.069	1.67	Mitochondria, extracellular, cytosol	Purine nucleotide biosynthetic process, IMP cyclohydrolase activity, phosphoribosy - laminoimidazolecarbox amide formvltrantsferase activity
23	Cyclophilin-type peptidylprolyl cis-trans isomerases	Tribolium castaneum	gi 91083463	61/0.7	8.1/23.1	100%	9% 9	DTNGSQFFITTKK TVQNFIELAK	0.092	0.064	1.43	Cytoplasm, nucleus	Protein transport, apoptosis, chaperone-mediated protein folding, protein peptidyl-prolyl isomerization, nutanase, acetylation, phosphoprotein, protein folding, Hsp70 protein binding, Hsp90 protein binding, heat shock protein binding, stress and defence
24	Predicted: hydroxysteroid dehydrogenase-like protein 2-like	Apis florea	gi 380029221	6.4/32	0/45.6	%66	2%	NHVAY'TISK	0.626 (.556	1.12	Mitochondria	Oxidoreductase, sterol binding, metabolic process
25	Glyceraldryde 3-phosphate dehydrogenase	Hypena proboscidalis	gi 307643669	5.5/23	6.5/22.6	100%	41%	LISWYDNEYGYSNR VIISAPSADAPMEVCGVNLDAYDPSFK VIPALNGKLTGMAFR VISNASCTTNCLAPLAK VPVANVSVVDLTVR	0.230	1.104	2.21	Cytoplasm, cytoskeleton, lipid particles	Glyceraldehyde 3-phosphate dehydrogenase (NAD+) (phosphorylating) activity, oxidoreductase activity, nucleoride binding, metal ion binding, metalolic, muscle dowolonnom
26	Enolase-phosphatase E1 (CG12173)	Drosophila melanogaster	gi 24644163	7.3/57.8	5.7/30.7	84%	2%	LTPTKsassogggggggggggggssnsggask	0.094 (0.088	1.07	Cytoplasm	Amino-acid biosynthesis, methionine biosynthesis, magnesium, metal-binding, hydrolase

 $\ensuremath{\textcircled{O}}$ 2016 The Royal Entomological Society, Physiological Entomology, **41**, 162–184

			NCBI	Exp.	Theor.	Protein	Sequence	Exclusive unique	Intensity				
Spot #	Protein ID	Organism	Accession #	MM/Id	PI/MW	Prob. (%)	coverage (%)	peptide sequences	Adult	I hqmy	Fold change	Subcellular component	Functions
27	NADH-ubiquinone oxidoreductase 75 kDa subunit G, putative	Pediculus humanus corporis	gi 242007132	5.6/79	6.5/80.7	100%	8%	AQOTLTAISPPGLAR FTDINFSGKR GSDMQVGTYVEK MCLVBVEK SPKPAACAMPVMK	0.073 (.073	00.1	Mitochondria, membrane	NADH dehydrogenase (ubiquinone) activity, electron carrier activity, iron-sulfur cluster binding, ATP synthesis, oxidoreductase. metabolism
28	Glutamate semial dehyde dehydrogenase	Culex quinquefasciatus	gi 170054902	6.5/61.8	6.9/85.7	100%	5%	EALGTY GAQNAISLVSTR GPVGVEGLLTTK SKVGTGGMDSK	0.061 (.047	1.31	Mitochondria, membrane, cytoplasm	Proline biosynthetic process, glutamate 5-kinase activity, glutamate 5-semialdehyde dehydrogenase activity, protein and nucleotide binding,
29	Predicted: ATP synthase subunit a, mitochondrial-like isoform 1	Megachile roundata	gi 383860333	7.8/45.8	9.1/59.5	100%	41%	AMKQVAGSMKLELAQYR AVDSLVPIGR DNGKHALINYDDLSK EAYFDJVFLHSR ELIIGBRQTGK EVAARAQFGSDLDAATQQLLNR GIRPAINVGLSVSR GIRPAINVGLSVSR GIRPAINVGLSVSR GIRPAINVGLSVSR GAANLLEPDVGVVFGNDR HALINYDLSKQAVATR LIGSAPKTNLEFGR LYCTVVAIGQK CYVANAIEEQVATR LYCTVVAIGQK COGVYVBAIEEQVATR COGVYVBAIEEQVATR GOGVYVBAIEEQVATR RSTVAQVKR TALAIDTIINQKR TALAIDTIINQKR TALAIDTIINQKR TALAIDTIINQKR TALAIDTIINQKR TALAIDTIINQKR TALAIDTIINQKR TALAIDTIINQKR TALAIDTIINQKR TALAIDTIINQKR TALAIDTIINQKR TALAIDTIINQKR TALAIDTIINQKR	0.667	224	867	Mitochondria, membrane, extracellular, catalytic domains and cores	ATP biosynthetic process. ATP eatabolic process. ATP bydrolysis coupled proton transport, cellular metabolic process, lipid metabolic process, metal ion binding process, metal ion binding
30	Putative mitochondrial ATP synthase α subunit precursor	Toxoptera citricida	gi 52630965	5.6/42	9.1/59.8	100%	10%	EAYPGIDYFYLHSR HALITYDDLSK TGAIVDVPVGEDLLGR VVDALGNTIDGK	0.748 (311 2	2.41	Mitochondria, membrane, extracellular, catalytic domains and cores	ATP biosynthetic process, ATP catabolic process, ATP hydrolysis coupled proton transport, cellular metabolic process, lipid metabolic process, anal molecule metabolic small molecule metabolic
	Putative ATP synthase subunit d	Diaphorina citri	gi 110671524		4.8/21.3	100%	48%	INEEKQTMAEIKK IPVFGLVDQFQK KVSALPEAPPK KWIEESQVR LTDADRPNFNTFK	0.330	.127	2.60	Mitochondria, membrane, extracellular, catalytic domains and cores	ATP biosynthetic process, ATP catabolic process, ATP atabolic process, ATP hydrolysis coupled proton transport, cellular metabolic process, lipid metabolic process, anal molecule metabolic second metabolic process,
32	Predicteci: myosin heavy chain, musele isoform 1	Acyrthosiphon pisum	gi 328702403		8.8/224	100%	4%	DKELAELTAK IEELEEEVEAER LADELRAEQDHAQTQEK LDEAENNALKGGK MODLVDKLQQK QIEEAEELAL.NLAK	0.209		1.68	Cytoplasm, cytoskeleton	Activ-binding, XTP-binding, activ-binding, XTP-binding, calmodulin-binding, motor protein, muscle protein, adult somatic muscle protein, adult epithelial cell migration, open tracheal system, fiight, locomotion, structural constituent of muscle

			NCBI	Exp.	Theor.	Protein	Sequence	Exclusive unique	Intensity		I	
Spot #	Protein ID	Organism	Accession #	PI/MW	PI/MW	Prob. (%)	coverage (%)	peptide sequences	Adult Nym	ph Fold chang	ge Subcellular component	Functions
33	Glycerol 3-phosphate dehydrogenase (GF1 3366)	Drosophila ananassae	gi 1 94756372	6.8/36	7.7/80.6	100%	18%	EID TNMNGQYELDEYLQMMSAIK GDVLSAWSGIRPLYSDPNK GTYSINDIR GYSINDIR HPEFPTDAEIR KGYVSINDIR KGYVSINDIR KGYVSINDIR KGYVSINDIR KGYVSINDIR KGYVSINDIR RGDVLSAWSGIRPLYSDPNK SSYYLSKK SSYLJSKK SSYLJSKK STAVUNDASGURSPL	0.125 0.03	4.02	Cytophasn. cytoskeleton, lipid particles	Glyceraldehyde 3-phosphate dehydrogenase (NAD+) (phosphorylating) activity, oxidoreductase activity, nucleoride binding, metal ion binding, metabolic, muscle development
34	Tubulin β-1 chain	Acyrthosiphon pisum	gi 298676439	6.1/33.7	4.6/50	100%	15%	ALIVDLERGTMDS VR FPGQLNADLR ISEQFTAMFR KLAVNAVPFPR LAVNAVPFPR LAVNAVPFPR LHFFMPGFAPLTSR VITVAAVFR	0.276 0.21	1.31	Cytoplasm, cytoskeleton	Microtubule-based process, protein polymerization, GTP binding, GTPase activity, structural constituent of cytoskeleton, metabolic processes, muscles development
Š	ATP synthase subunit α (GF13537)	Drosophila ananassae	gi 194757070		9/59.4	100%	% I 6	AMKQVAGSMK AMKQVAGSMKLELAQYR AVDSLVPIGR AVDSLVPIGRQR EAYFGDVFYLHSR ELIIGDR ELIIGDR EVAAFAGTF EVAAFAGTF EVAAFAGTF EVAAFAGTF EVAAFAGTF EVAAFAGTF EVAAFAGTF EVAAFAGTF EVAAFAGTF ELIGDR CAAFAGTF ALTYDDVSK CAAFAGTVK HALIYDTINQK GVAGSMKLELAQYR BALAIDTINQK QVAGSMKLELAQYR RSTVAQIVKR RSTVAQIVKR RSTVAQIVKR RSTVAQIVKR TALAIDTINQKR TALAIDTINKR TALAIDTINQKR TALAIDTINQKR TALAIDTINKR TALAIDTINCKR	0.474 0.21	2.17	Mitochondria, membrane, extracellular, catalytic domains and cores	ATP hydrolysis coupled proton transport. ATP synthesis coupled proton transport. ATP binding, proton-transporting ATP synthase activity, rotational mechanism proton-transporting mechanism, protein binding, metabolic processes
36	Glycerol 3-phosphate dehydrogenase, mitochondrial	Camponotus floridanus	gi 307190125	5.6/46.8	5.9/65.9	100%	19%	DKEPINLTK EASEFLAQEMGQNVIR EIDTNMIOQVELDEYLQMMSAIK KGTVSINDIRR KIHPEFPYIDAEIR NYTLNPDVEVRR RWPIGKK SGHVAYSR TVKSSYYLSK	0.100 0.08	121	Cyroplasm, cyroskeleton, lipid particles	Glyceraldehyde 3-phosphate dehydrogranse (NAD+) (phosphorylating) activity, oxidoredurtase activity, nucleotide binding, calcium ion binding, metabolic, muscle development

			NCRI	Fyn	Theor	Protein	Semence	Exclusive unique	Intensity				
Spot #	Protein ID	Organism	Accession #	PI/MW	PI/MW	Prob. (%)	coverage (%)	peptide sequences	Adult N	ymph	Fold change	Subcellular component	Functions
37	H ⁺ transporting ATP synthase β subunit	Heliconius numata aurora	gi 345532344	7.4/64.5	4.8/36.7	100%	12%	AHGGYSVFAGVGER LVLEVAQHLGENTVR TIAMDGTQGLVR	0.116 0	260	61.1	Mitochondria, membrane, catalytic domains and cores, lipid particles	ATP hydrolysis coupled proton transport, ATP synthesis coupled proton transporting ATP synthase activity, rotational mechanism proton-transporting ATPase activity, rotational activity, rotational
38	Phosphoglycerate mutase	Acyrhosiphon pisum	gi 187111150	6.9/26	6.1/28.9	95%	8%	FLGDEFTVKK HGESEWNQK	0.122 0	.029	4.27	Cyroskeleton, Z disc, M band	Somatic muscle development, phosphoglyceromutase activity, glycolytic process, isomerase, igreolysis, metabolic process, intercellular transferase activity, phosphotransferase
39	Electron transfer flavoprotein subunit α	Acyrthosiphon pisum	gi 193595390	6.3/30.7	8.1/35.2	100%	11%	AAVDAGFVPNDMQIGQTGK SPDTFVR TIYAGNAILTLK	0.429 0	.166	2.58	Mitochondria, cytoskeleton, lipid particles	DNA repair, protein-chromophore linkage, deoxyribodipyrinidine photo-lyase activity, DNA and nucleotide binding
40	Glycerol 3-phosphate dehydrogenase, NAD-dependent	Dendroctorus ponderoxae	gi 332376853	5.8/31	6.3/39.7	100%	18%	AEGGGIDLISHIITR LPPNVANPDVVEAAK LTEIINETHENVK NIVACGAGFVDGLGLGDNTK	0.051 0	042	1.2.1	Cytoplasm, cytoskeleton, lipid particles	Oxidoreductase activity, NAD binding, glycerol 3-phosphate dehydrogenase [NAD+] activity, protein homodimerization activity, endohydrate metabolic process, coenzyme binding, muscles development
41	Predicted: V-type proton ATPase suburit b-like	Acyrthosiphon pisum	gi 3.2871.6950	5.8/35.5	5.5/55.3	100%	32%	AVVGFEALTPDDLLYLEFLTK AVVQYFEGTSGIDAK EVAAREEVGR IFPKEMLRR IPFSAGLPNELAQ(CR KDHSDVSQLACYAIGK QIYPPINVLPSLSR TPVSEDMLGR VFNCSGKPIDK VFNCSGKPIDK VFNCSGKPIDK VFNCSGKPIDKGPPLLAEDYLDIEG QPNPYSR VFNCSGKPIDK	0.150 0	073	2.05	Mitochondria, membrane, eatalytic domain, lipid particles	ATP synthesis, fon transport, plasma membrane ATP synthesis coupled proton transport, totational mechanism, proton-transporting ATP synthase complex, coupling factor F(o), catalytic activity and metabolism
42	Putative heat shock cognate 70 protein, partial	Diaphorina citri	gi 110456396	5.8/50.8	4.9/208	100%	27%	DNNLLGKFELTSIPPAPR ELEAICNPITK LSKEDIER TQILDKCNDVIK	0.167 0	061	2.76	Cytoplasm, nucleus	Protein and nucleotide binding, response to stress
43	Peroxiredoxin	Drosophila mojavensis	gi 195120862	5.5/52.6	5.6/24.7	100%	6%	LGATIPNFK LGATIPNFKAETTK	0.073 0	.064	1.13	Cytoplasm, cytoskeleton, cytosol	Antioxidant activity, peroxiredoxin activity, protein binding, metabolism, stress
4	Triose phosphate isomerase	Lestes congener	gi 46909449	5.8/88	5.6/22.9	100%	15%	TASPEQAQEVHAQLR TASPEQAQEVHAQLRK VVLAYEPVWAIGTGK	0 060.0	.051	1.76		Tri ose-pho sphate isomerase activity, gluconeogenesis, glycolytic process, metabolic process, catalytic activity, isomerase activity

Table 1. Continued.

 $\ensuremath{\mathbb O}$ 2016 The Royal Entomological Society, Physiological Entomology, 41, 162–184

Spot #	Protein ID	Organism	NCBI Accession #	Exp. PI/MW	Theor. PI/MW	Protein Prob. (%)	Sequence coverage (%)	Exclusive unique peptide sequences	Intensity Adult Nyı	nph Fold c	hange Subcellular compone	t Functions
45	H ⁺ transporting ATP synthase β subunit	Heliconius numata aurora	gi 345532344	5.5/24	4.9/36.7	100%	72%	AHGGYSYFAGVGER AIAELGIYPAVDPLDSTSR DOGGQDYLLFIDNIFR EGOIDLYHEMIESGVISLKDK FTQAGSEYSALLGR GSITSVQAIYVPADDLTDPAPATT FAHLDATTVLSR GSITSVQAIYVPADDLTDPAPATT FAHLDATTVLSR GSITSVQAIYVPADDLTDPAPATT FAHLDATTVLSR IINVIGEPDBR MDPNIGAEHYN IINVIGEPDBR MDPNIGAEHYN IINVIGEPDBR MDPNIGAEHYN TAANGCTQGLVR TAANGCTQGLVR TREGNDLYHEMIESGVISLKDK TALGUTVAEYFR VALTGLTVAEYFR	0.115 0.1	- 1.0c	Cyroskeleton	ATP biosynthetic process, ion transport, ATP synthesis coupled proton transport, proton transport, ATP metabolic process, totational mechanism, glycoly tic process, nervous system
46	Leucine aminopepti- dase/peptidase B	Danaus plexippus	gi 357608936	5.5/25.2	7.5/55.4	100%	4%	gvtydfgadik Vtntidaegr	0.195 0.1.	39 1.40	Mytochondria, meml lipid particles	ane, Aminopeptidase activity, proteolysis protease, hydrolase, nucleotide and mangamese ion binding, metallo exopeptidase activity
47	Heat shock protein 60	Culicoides varipemis	gi 2738077	5.5/30.5	6.5/61.9	100%	28%	AAVEEGIVPGGGTALLR APGEGIVPGGGTALLR APGEGDRR DGKTLTDELQVIEGMKFDR DKYTDALNATR BKYTDALNATR BKYTDALNATR GANTEIRG GANULEQXBK GIDPTKVVR GIDPTKVR GIDPTKVVR GIDPTKVVR GIDPTKVVR GIDPTKVVR GIDPTKVVR GIDPTKVVR GIDPTKVVR GIDPTKVVR GIDPTKVVR GIDPTKVR GIDPTKVR GIDPTKVVR GIDPTKVR GIDFTKVR GIDPTKVR GIDFTKVR GIDPTKVR GIDFTKVR	0.242 0.0	5.41 5.41	Mytochondria, cytop cytoskeleton, lipid particles	ism. Protein refolding, response to stress, ATP binding
84	Chapenonin Cpn60	Drasophila simulans	gil 195566149	6.7/52.2	5.2/60.8	100%	23%	AAV EEGIV PGGGTALLR ALAKEGFEK APGFGDNR DKFØNIGAK GIIDPTK VVR GIIDPTK VVR GINDVIEQSWGSPK IGLQVAAVR LVQDVANNTNEAGIDGTTTATVLAR TLTDELEV BGKMFDR VGGSSEVEV NEKKDR	0.173 0.0	98 1.76	Mytochondria, cytop cytoskeleton, lipid particles	ism, Protein refolding, ATP binding, metabolic process, response to stress

			NCBI	Exp.	Theor.	Protein	Sequence	Exclusive unique	Intensity				
Spot #	# Protein ID	Organism	Accession #	MW/Id	PI/MW	Prob. (%)	coverage (%)	peptide sequences	Adult	Nymph	Fold change	Subcellular component	Functions
49	Leukorriene a4 hydrolase	Drosophila grimshawi	gi 195035229	6.4/22.5	6.1/68.7	80%	6%	VATVSLPR DADKKDK	0.999	0.659	1.52	Cytoplasm	Leukotriene biosynthetic process, zinc ion binding, metallopeptidase activity, leukotriene-A4 hydrollase activity, muske develomment
30	Actin 874, isoform a	Solenapsis invicta	gi 171.37090	<i>2</i> .6/3.2	5.3/41.8	8001	63%	AGFAGDDAPR AVFPSIVGRPR DUTDYLMK ELVRDIKEK GYSFTTTARELVR HQGVMVGMGQKDSYVGDEAQSKR IKIIAPPERK IKIIAPPEK IKIIAPPEK IKIIAPPERK IKIIAPPERATAASTSLEK LCYVALDFFQEMATAASTSLEK LLDLAGRDLTDYLMK QEYDESGPUVRK RGILTLK QEYDESGPGIVHRK RGILTLK QEYDESGPGIVHRK RGILTLK VERTHAPLAPTIN VATEBHPVLITTEAPLNPK VPIEHGITNWDDMEK	0.85 2	0.224	0.8.6.	Cyroskeleton, cyroplasım, lipid particles	ATP binding, structural constitution of the skeleton, movement
51	Glyoxalase i	Trichoplax adhaerens	gi:196006682	5.6/21.7	5.4/19.8	95%	6%	FEQLGVEFVK	0.296	0.501	0.59	Extracellular, cytoplasm	Glyoxalase I catalyzes the isomerization of the hemithioaceat. formed by a 2-oxoaldehyde and glutathione, to S-D-lactoy[glutathione
22	Fructose-bisphosphate aldolase class-1	Drosophila mojavensis	gi 195111400	7.3/39.2	6.9/39.9	100%	14%	ADDGTPFVQLLK ALQASVLR AQXYTETVLAAVYK GILADESVSTMGK GILADESVSTMGK VTETVLAAVYK	0.875	1.032	0.85	Cytoskeleton	Glycolysis, lyace, glycolytic process fructose-bisphosphate aldolase activity
53	Glutamine synthetase 2, [GMP synthase (glutamine-hydrolyzing)]	Acyrthosiphon pisum	gi:237874151	6.6/39.7	6.3/41.5	100%	10%	DIVEAHYR ENNGIIEIEK HETSSIHDFSAGVANR	0.374	0.688	0.54	Cytoplasm	Catalyzes the synthesis of GMP from XMP, GMP biosynthetic process, gutamine metabolic process. ATP binding, ligase activity, pyrophosphatase activity
54	Hydroxyacid-oxoacid transhydrogenase(hot), mitochondrial-like	Bombus terrestris	gi:340719960	6.6/45.8	7.5/51.5	100%	%11	AVYNQDDIEAR GKFITVPLKPLIAVPTTSGTGS ETTGVSIFDYQPLAK RAVYNQDDIEAR	0.1922	0.209	0.92	Mitochondria	Hydrox yacid-oxoacid transhydrogenase activity, metal ion binding, metabolism, oxidoreductase activity, proton transport
55 56	Unknown, partial CBN-HSP-60 protein	Diaphorina citri Caenorhabditis brenneri	gi 110456536 gi 341901164	5.5/56.3 6.6/58.5	9.6/13.4 5.3/60	100% 97%	9% 3%	ETANAIVYLR AAVEEGIVPGGGVALLR	0.426 0.296	0.587 0.327	0.73	Mitochondrion, cytoplasm, cytoskeleton, lipid particles	protein refolding, ATP binding, chaperone, response to stress, nucleotide-binding
57	Neural conserved at 73ef, isoform i	Drosophila melanogaster	gi 161084461	6.8/58.7	6.5/122	100%	3%	ATGFEAFLAK LSGQDVER SSPYCTDVAR	0.048	0.335	0.14	Cytoskeleton	Oxoglutarate dehydrogenase (succinyl-transferring) activity, thiamine pyrophosphate binding , tricarboxylic acid cycle, oxidoreductase

			NCBI	0.00	These	Destain	Comments	Underse stations	Intensit	Ŷ			
Spot #	# Protein ID	Organism	Accession #	PI/MW	PI/MW	Prob. (%)	coverage (%)	peptide sequences	Adult	Nymph	Fold chang	Subcellular component	Functions
58	e-Actinin, sarcomeric-like isoform 3	Acyrthosiphion pisum	gi 328703079	7.5/94	5.6/106	100%	14%	AKLETNFNTLQTK ASFNHFDKNR BSFNHFDKNR ESTDTDTAEQVDSFR FALQDISVEBMTAK GITGEQLINEFR GKEEMLQSSDFR LETNFNTLQTK LLETNFNTLQTK LLETNFNTLQTK MVSDIANAWK VGWEQLLTSINR	0.109	0.451	0.24	Cytoplasm, cytoskeleton, Z dise, cytosol	Actin binding, metal binding, actin cytoskeleton reorganization, movement, double-stranded RNA binding
59	Glutathione S-transferase s2	Laodelphax striatella	gi 373940157	6.7/24.7	7.3/450	96%	5%	NNGGYLANGK	0.114	0.115	66.0	Cytoplasm, cytosol	Belongs to the GST superfamily, transferase activity, metabolic process, oxidation reduction process
6	Glycerol 3-phosphate dehydrogenae, NAD-dependent	Dendroctonus ponderosae	gi 332376853	6.9/32.7	6.3/39.7	100%	20%	AEGGGIDLISHIITR KLTEIINETHENVK LGLMEMVK LDNVVVNPDVVEAAK LPNVVVNPDVVEAAK NIVACGAGFVDGLGLGDNTK	0.178	0.289	0.61	Cytoplasm, cytoskeleton, lipid particles	Oxidoreductase activity, NAD binding, glycerol 3-phosphate dehydrogenase [NAD+1] activity, protein homodimerization activity, cathobydrate metabolic process, ocenzyme binding, oxidoreductase activity, muscle development
61	Predicted: probable medium-chain specific asyl-CoA dehydrogenase, mitochondrial-like	Megachile rotundata	gi 383853383	7.1/39	7.3/39	100%	89	EEIIPVAAEHDR IYQIYEGTAQIQR	0.3985	0.4396	160	Mitochondria, extracellular, lipid particle	Fatty acid metabolism, lipid metabolism, oxidoreductase, FAD binding, fatty acid Poxidation, acyLCoA dehydrogenase acivity, flavin adenine dimeleotide binding
62	α-Tubulin N-acetyltransferase	Aedes aegypti	gi 157113931	7.2/52.8	5/49.9	8001	%24	AVCML.SNTTAI AE AWAR AYFYDLEPTVVDEVR DYNAALATK DVNAALATK ELVDVLDR ELVDVLDR FDGALNVDLTBFQTNLVPYPR HEPLVTYAPVISAEK NLDIERPTYTNLNR OLFHEGLITGK TIGGGDDSFNTFFSETGAGK TIQFVDWCFDGFK VGINYQPPTVVPGGLJAK	0.074	0.123	0.60	Cytoskeleton	Acyltransferase, e-tubulin acetylation, neuron development, regulation of microtubule cytoskeleton organization, tubulin N-acetyltransferase activity, transferase activity, transferring acyl groups, muscle and nervous system development
63	Haemolymph juvenile hormone binding protein	Drosophila melanogaster	gi 442634170	6.7/31	8.5/31.1	80%	4%	LNDGIPGLTSIR	0.111	0.389	0.29	Extracellular	Ecdysteroid hormone receptor activity, protein binding, development
49	26s proteasome non-ATPase regulatory subunit 7	Crassostrea gigas	gi 405962439	6.7/32.5	6.7/12.7	100%	11%	DIKDTTVGSLSQR TFDHVPSEIGAEEAEEVGVEHLLR	0.423	0.470	06.0	Cytoplasm, nucleus	Catalytic activity, cofactor, metabolic process

65 /	Protein ID	Organism	NCBI Accession #	Exp. PI/MW	Theor. PI/MW	Protein Prob. (%)	Sequence coverage (%)	Exclusive unique peptide sequences	Adult	y Nymph	Fold change	Subcellular component	Functions
	ATP synthase subunit β	Acyrthosiphon pisum	gil209915626	5.3/48.3	5/55.8	100%	43%	AHGGYSVFAGVGER AIAELGIYPAVDPLDSTSR DQEGQDVLLFIDNIER EGNDLYHEMIESQVISLKDK FTQAGSEVSALLGR IGLFGGAGVGK IINVIGEPIDERGPIDTDK IINVIGEPIDERGPIDTDK IINVIGEPIDERGPIDTDK IIVVIGEPIDERGPIDTDK IIVVIGEPIDERGPIDTDK IIVVIGEPIDERGPIDTDK IIVVIGEPIDERGPIDTDK IIVVIGEPIDERGPIDTDK IIVVIGEPIDERGPIDTDK TREGNDLYHEMIESGVISLKDK TVLIMELINVVK VALVYGQMNIEPGAR	0.6165	0.7311	0.84	Mitochondria, membrane, cataly tic domain, lipid particles	ATP synthesis, ion transport, plasma membrane ATP synthesis coupled proton transport, rotational mechanism, proton-transporting ATP synthase complex, coupling factor F(o), catalytic activity and metabolism
99	Similar to V.AITPase subunit a isoform 2	Tribolium castaneum	gi 91081489	5.5/68	5.1/31.2	%001	14%	DMGYNVSMMADSTSR DSMSNILYQLSSMK FGYVFAVSGPVVTAEK FKDPVKDGEAK HAVESTAQSENK LAEMPADSGYPAYLGAR	0.1207	0.1748	0.69	Mitochondria, membrane, catalytic domain, lipid particles	Hydrogen ion transmembrane transporter activity, hydrogen-translocating pyrophosphatase activity, ATP hydrolysis coupled, ATP synthesis coupled proton transport elular response to nutrient levels, vacuolar proton-transporting V-type ATPase conflex assembly
9 19	Glutathione S-transferase-like protein	Diaphorina citri	gi 110456486	5.6/22.7	5.7/21.1	100%	7%	LCLTELGLEAEYK	0.403	0.525	0.77	Cytoplasm, cytosol	Belongs to the GST superfamily, transferase activity, metabolic process, oxidation reduction process
68	Proteasome subunit α type 6-like protein	Xenopsylla cheopis	gi 125809137	6.5/25.7	7.6/27.1	100%	8%	HITJFSPEGR Lyqveyafk	0.169	0.503	0.34	Cytoplasm, nucleus	Proteasome core complex, a-subunit complex, ubiquitin-dependent protein catabolic process, threonine-type endopeptidase activity
I 69	Putative ribosomal protein s3	Diaphorina citri	gi 110456370	6.6/27	9.4/24.1	100%	9%9	ELAEDGYSGVEIR	0.044	0.052	0.84	Membrane	Translation, small ribosomal subunit RNA binding, structural constituent of ribosome
20	Purative acid phosphatase 1	Diaphorina citri	gi]110456445	7.4/32.8	6.6/41	100%	08 %	AILEANKNILIDYASK AQFAQEFLR ELGITLPAWTNAIPDPLSK ESGMPIVTPDDAQSLYSTLK ESGMPIVTPDDAQSLYSTLK HSFEPFGWQQLTNVGK ICPWENFVSLTSSK ITAQSFVINAMTPVLQR KIEDTNDKLSGR KIEDTNDKLSGR KIEDTNPRLSGR MSTMLFLAGLFPPK NTTSEPYLLQIPGCSK MSTMLFLAGLFPPK NTTSEPYLLQIPGCSK RAQFAQGEFLR RYDSFLGDNYSPDYLK SYDEECQALNPIFVYR TPADTYRNDYXK YQEELDNVFNSPEVR YQEELDNVFNSPEVR YQEBLDNVFNSPEVR YQEBLDNVFNSPEVR	0.051	860.0	0.52	Membrane	Acid phosphorylation, response to stress dephosphorylation, response to stress

							1		Intensity				
Spot #	Protein ID	Organism	Accession #	EXP. PI/MW	PI/MW	Prob. (%)	Sequence coverage (%)	Exclusive unique peptide sequences	Adult	Nymph	Fold change	Subcellular component	Functions
12	Predicted: annexin-b9-like	Acyrthosiphon pisum	gil 193650295	7.2/63	6.1/36	100%	12%	DIKGDTSGHFK DIKGDTSGHFKR GDTSGHFKR SEIDLGDIKQVFEK SMAGLGTDDKTLIR	0.235	0.347	0.67	Membrane, plasma membrane	Calcium/phospholipid-binding, basolateral protein localization, endosome transport via multivesicular body sorting pathway, maintenance of cell polarity, regulation of multivesicular body size involved in endosome transport, actin and spectrin binding, maintenance of cell polarity, wing disc dorsh ventral polarity, wing disc
72	Hypothetical protein, partial	Hodotermopsis sjoestedti	gi 58430712	7.5/45.7	8.8/15.2	%66	12%	TVEYTADPHNGFNAVVHK	0.032	0.034	0.95	Extracellular, cytoskeleton	and development Chitin-based cuticle development
73	unsectence potent ramity Succiny-CoA synthetase of submit	Sol enopsis invicta	gi 322787000	6.5/29.2	8.6/33.9	100%	22%	GGAQDKINALEK IGIMPGHIHQR LIGPNCPGIIAPEQCK RMGHAGAIISGGK SPAQMGNELLK VICQGFTGK	0.088	0.169	0.52	Mitochondria	Catalyzes the ATP- or GTP-dependent ligation of auccinate and CoA to form succinyl-CoA. The nature of the β subunit determines the nucleotide specificity. GTP shiding.
74	Giyceraldhyde 3-phosphate dehydrogenase	Hypena proboscidalis	gi 307643669	7.4/31	6.6/22.7	100%	41%	LISWYDNEYGYSNR VIISAPS ADAPMFVCGVNLDAYDPSFK VIBALDRKLTGMAFR VISNASCTTNCLAPLAK VPNANVSVYDT7VR	0.865	0.954	16:0	Cytoplasm, cytoskeleton, lipid particles	Glyceraldebroth structure dehydrogenase (NAD+) (phosphorylating) activity, binding, oxidoreductase activity, binding, metabolic muscle devolument
75	Yellow-c-like protein, partial	Diapkorina citri	gi 110456529	7.3/32.7	4.7/12.1	100%	71%	DATESTYCDY DATESTYCDY DGVGCWNSYK GLHTDEINYR HANEYSADTTDLVATDSETLVFP NDLKVDK NDLKVDK FFQVLVASIK	0.346	0.369	0.94	Extracellular	Melanin biosynthetic process
76	Predictied: V-type proton ATPase subunit b-like	Acyrthosiphon pisum	gi]328716950	6.0/46.3	5.1/55.3	100%	32%	AVVQFEGTYPDDLYLEFLTK AVVQFEGTSGIDAK DHSDVSNQLYACYAIGK GOKIPFSAAGLPHNEIAAQICR HVLVILTDMSYAEALR HVLVILTDMSYAEALR HVLVILTDMSYAGLPHNEIAAQICR KDHSIPVSNQLYACYAIGK QIYPPINVLPSLSR TPVSEDMLGR VF0SGKPDLAEDYLDIEGQ PINYSR YAEVOLR	0.042	0.077	0.54	Mitochondria, membane, catalytic domain, lipid particles	ATP synthesis, ion transport, plasma membrane ATP synthesis coupled proton transport, rotational mechanism, proton-transporting ATP synthase complex, coupling factor F(o), catalytic activity and metabolism
77	Protein E	Pediculus humanus corporis	gi 242017402	5.8/24	5.9/24.5	100%	39%	CSDGVQHFK EGLIPSNYIEMK HDFNATEDELSFRK HEGAFLIR KGLPATYVTPYHS RGDVITYTDR VSSSPGDFSLSVK	0.095	0.337	0.28		Spliceosomal complex assembly, protein binding

			NCBI	Exp.	Theor.	Protein	Sequence	Exclusive unique	Intensity				
Spot #	Protein ID	Organism	Accession #	PI/MW	PI/MW	Prob. (%)	coverage (%)	peptide sequences	Adult	Nymph	Fold change	Subcellular component	Functions
78	Lactoylglutathione lyase	Pediculus humanus corporis	gi 242022910	5.3/58.5	6.6/32.1	100%	9%9	ALHFVFK VLRHEEFK	0.147	0.357	0.41	Extracellular, cytoplasm	Lyase activity, carbohydrate metabolic process, oxidoreductase,
79	Thioredoxin peroxidase	Apis cerana cerana	gi 314991296	5.3/58.7	6.0/18.0	100%	15%	GLFIIDDK GLFIIDDKQNLR QTTINDLPVGR SVNFTI P	0.302	0.815	0.37	Cytoplasm, cytoskeleton, cytosol	lactoyigutatimone tyase activity Oxidoreductase, peroxidase, peroxitedoxin activity, antioxidant, metabolic, stress, defence and immuniv.
80	Predicted: peroxiredoxin 1	Apis mellifera	gi 328777120	5.3/32.8	5.7/21.8	100%	12%	GLFIIDDKQNLR QITINDLPVGR	0.254	0.269	0.94	Cytoplasm, cytoskeleton, cytosol	Antioxidant activity, peroxiredoxin activity, protein binding,
81	Transmembrane amino acid transnorter nrotein	Drosophila mojavensis	gi 195112893	6.6/22	8.5/58.5	81%	9696	VARLLNR Avfilddkoil r	0.187	0.512	0.36	Membrane	Vitamin transport, amino acid transmembrane transnorter activity
82	Nucleoside diphosphate kinase	Drosophila melanogaster	gi:127980	7.8/23	7.8/17.2			QMLGATNPADSLPGTIR NIHGSDAVESAEK TFIMVKPDGVQR EIALWFNEK	0.059	0.082	0.71	Membrane, cytoskeleton, cytoplasm	Nucleoside diphosphate phosphorylation, GTP biosynthetic process, UTP biosynthetic process, CTP biosynthetic process, protein
								ELVYTPAAK GDFCIQVGR HYADLSARPFFPGLVNYMNS GPV VPMV WEGLNVVK					phosphorylation, micruthule-based process, wing dise development, mitotic nuclear division, open tracheal system division, open tracheal system, mieration, orea tracheal system,
													nucleotide metabolic process, ATP, GTP binding, kinase activity
83	Actin	Euagrus chisoseus	gi 167683040	6.7/40.5	5.8/39.4	100%	12%	AVFPSIV GRPR DS YV GDEAQSKR VAPEEH PILLTEA PLNPK	0.051	I		Cytoplasm, cytoskeleton, lipid particles	Highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells, ATP biding, muscle development,
28	Enolase, partial	Dryocoetoides cristatus	gi 14161541	6.5/47.5	5.8/40.7	100%	12%	EGQYDLDFKNPNSDK FGLDATAVGDEGGFAPNILNNK KACNCILLK	0.181	I		Catalytic domain, cytoplasm, lipid particles, plasma membrane	reprotection Glycolytic process, magnesium ion binding, phosphopyruvate hydratase activity
8	Glutamate/acetylglutamate kinase	Drosophila virilis	gi 1 953 79098	7.1/81.5	7.1/83.7	100%	13 %	AAAAVGOSGI.MSLYDAMF AQYGVK BEISDL.SMEK GPVOVEGLITTK HIDLIIPR LADFLIASI.SMR LASIVEQVAECHLEGR LASIVEQVAECHLEGR LASIVEGANDSK SKVOTGCANDSK	0.216	I		Cytoplasm	Proline biosynthetic process, glutamate 5-kinase activity, glutamate-5-semialdehyde dehydrogenase activity, oxidoreductase activity
88	Epsilon, an isoform of 14-3-3 protein	Tribolium castaneum	gi 91087875	6.3/29.5	4.7/29.2	% 66	10%	SASDIAMTELPPTHPIR	0.083	1			Protein binding, mitotic G2 DNA damage checkpoint, axon guidance, determination of adult lifespan, germarium-derived oocyte fate determination, imaginal disc development, oocyte microtubule, positive regulation of growth, regulation of mitosis, response to radiation, protein binding

Table 1. Continued.

			NCBI	Exn.	Theor	Protein	Sequence	Exclusive unique	Intensity		
Spot #	Protein ID	Organism	Accession #	PI/MW	PI/MW	Prob. (%)	coverage (%)	peptide sequences	Adult Nymph Fold change	Subcellular component	Functions
87	Isocitrate dehydrogenase [NADP] cytoplasmic	Acromymex echination	gi 332029736	7.3/40.5	8/44.9	100%	13%	CATTTPDEKR ETSTNPIASIFAWTR HAMADOYK KIWYEHR SNGGFVWSCK	0.326 -	Mitochondria	2-oxoglutarate metabolic process, NADPH regeneration, cellular lipid metabolic process, female gonad development, glutathore metabolic process, trientboxylic acid cycle, magnesium ion binding, NADP, NAD binding, receptor binding,
88	Heat shock protein 60	Polypedilum vanderplanki	gi 303305116	5.3/55	5.3/60.5	100%	10%	AAVEEGIVPGGGTALLR LVQDVANNTNEEAGDGTTTATVLAR VCGSSEDVANAEVEDD	0.025 -	Mitochondria, cytoplasm, cytoskeleton, lipid	reproductive system development Protein refolding, response to stress, ATP binding
68	V-ATPase subunit a, partial	Locusta migratoria	gi 401757819	5.3/23	5.2/31.2	100%	8%	HAVESTAQSENK HAVESTAQSENK NMIAFYDMSR	0.205 -	purtoes Mitochondria, membrane, catalytic domain, lipid particles	ATP synthesis, ion transport, plasma membrane ATP synthesis coupled proton transport, rotational mechanism, proton-transporting ATP synthase complex, coupling factor F(0), catalytic activity and metabolism
8	Tropomyosin I isoform a	Lethocerus indicus	gi 220980842	5.3/36	4.6(32.8	100%	55 %	ALQNAESEVAALNRR ANQREEFEYKNQIK DANLRAEKAEBEEAR DKALQNAESEVAALNRR FLAEEADKKYDEVAR IQLLEELERSEER IQLLEELERSEER IVELJEELERVGINLK KLAMVEADLERAERR KMQAMKLEK LAEASQAADESERQR MDALENQLKEAR MDALENQLKEAR RIQLLEDDLERSEER SLADEERMDALENQLK SLAVEBERANDIREEVK	- 0.511	Cytoplasm, cytoskeleton	Muscle protein, protein binding, actin-binding, muscle contraction, oogenesis, regutation of lamelipodium assembly, pole plasm assembly, actin filament binding, movement
16	Predicted: glycerol 3-phosphate dehydrogenase, mitochondrial-like isoform 1	Acyrthosiphon pisum	gi 193580091	6.0/32.7	6.8/80	100%	12%	EIDTNMNGQVELDEYLQMMSALK GYVSINDIR IHPEFPYDAEIR MCLALALTATR MVKEALHER MVVELDIPASGTSSRSTK	0.134 -	Cytoplasm, cytoskeleton, lipid particles	Glyceraldehyde 3-phosphate dehydrogenase (NAD+) (phosphorylating) activity, oxidoreductase activity, binding, metabolic, muscle development
2	Tubulin β-1	Acyrthosiphon pisum	gi 298676439	7.1/62.5	5.3/41.8	100%	15%	AILYDLEPGTMDSVR FPGQLNADLR ISBGFTAMFR KLAVNNVPFPR LLAVNNVPFPR LHFPNGFAPTTSR YLTVAAVFR	0.094 -	Cytoplasm, cytoskeleton	Microtubule-based process, protein, polymeri zation, GTP binding, GTPase activity, structural constituent of cytoskeleton, metabolic processes, muscles development
93	Thioredoxin_like	Drosophila mojavensis	gi 195122452	6.5/27.5	8.5/85.5	80%	6%	IKITIYMITYAATIYIK	0.093 –	Cytoplasm, cytoskeleton, cytosol	Protein binding, RNA splicing, via transesterification reactions, gene expression, mitotic nuclear division, spliceosonal complex assembly

 $\ensuremath{\textcircled{O}}$ 2016 The Royal Entomological Society, Physiological Entomology, 41, 162–184

Tablé	3 1. Continued.										
			NCBI	Exp.	Theor.	Protein	Sequence	Exclusive unique	Intensity		
Spot #	Protein ID	Organism	Accession #	PI/MW	MM/Id	Prob. (%)	coverage (%)	peptide sequences	Adult Nymph Fold change	Subcellular component	Functions
94	Aldo-keto reductases	Bombyx mori	gi 322802295	6.6/30	6.6/36.8	100%	5%	HIDTATVYENEHVIGK	0.031 -	Cytoplasm	Lipid metabolism, steroid metabolism oxidoreductase
95	Enolase	Coccotrypes dactyliperda	gi 14161525	6.5/32.8	5.5/29.2	100%	96%	EGQYDIDFKNPNSDK	0.060 -	Catalytic domain,	activity Glycolytic process, magnesium ion
										cytoprasm, при particles, plasma membrane	onutung, prospropy ruvac hydratase activity
96	Predicted: probable aconitate	Acyrthosiphon pisum	gi 328716624	5.6/71.7	7.3/86	100%	16%	ATIERDGIAQTLR	0.172 -	Mitochondria	Catalytic activity, metal ion
	nyuratase, mntoenonunai-me							GKCTTDHISAAGPWLK			omung, metaoone process
								IHETNLKK LSNPFGDELPAR			
								VAMQDATAQMAMLQFISSGLPK			
76	Tubulin α chain	Aedes aegypti	gi 157113931	5.8/26	4.9/49.9	100%	56%	AFVHWYVGEGMEEGEFSEAR	0.074 -	Cytoskeleton	Acyltransferase, α-tubulin
								AVCMLSNTTAIAEAWAR			acetylation, neuron
								AVFVDLEPTVVDEVR			development, regulation of
								AYHEQLSVAEITNACFEPANQMVK			microtubule cytoskeleton
								DVNAAIATIK			organization, tubulin
								EIVDVVLDR			N-acetyltransferase activity,
								FDGALNVDLTEFQTNLVPYPR			transferase activity, transferring
								GHYTIGKEIVDVVLDR			acyl groups, muscles
								IHFPLVTYAPVISAEK			development
								LDHKFDLMYAK			
								LSVDYGKK			
								NLDIERPTYTNLNR			
								QLFHPEQLITGKEDAANNYAR			
								RNLDIERPTYTNLNR			
								TIGGGDDSFNTFFSETGAGK			
								TIQFVDWCPTGFK			
								VGINYQPPTVVPGGDLAK			
								YMACCMLYR			
98	Protein CBR-ACT-5	Caenorhabditis briggsae	gi 268574578	5.7/56	5.5/41.9	%66	16%	AGFAGDDAPR	0.037 -	Cytoskeleton, cytoplasm	ATP binding, nucleotide-binding,
								DSYVGDEAQSKR			belongs to the actin family
								EDEIAALVVDNGSGMCK			
								HQGVMVGMGQK			
								IKIIAPPERK			

Fig. 3. Gene ontology (GO) annotations of differentially expressed proteins in fifth-instar nymphs and adults of the Asian citrus psyllid *Diaphorina citri*. All the differentially expressed proteins were first classified using the standard terminologies of the two major categories, molecular function (MF) and biological process (BP), using the GO database (http://www.geneontology.org). Protein expression level represents the total volume percentage (Vol%) for each category. The %Vol is the relative volume and represents the total volume of each category divided by the total volume for total spot volume in the image. The spot volume represents the integration of optical density for the spot area. Optical density (OD) is the highest calibrated pixel intensity in the spot. The spot area is calculated in mm².

65. Generally, ATP synthase subunits increased by more than two-fold. Enolase (S11, S26, S84, S95) was found at higher levels (3.3-fold in spot 11) in adults than nymphs. Phosphoglyceromutase (S17, S18) increased by up to 17-fold in adults. The enzyme 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (EC: 2.1.2.3) (= AICARFT/IMP cyclohydrolase or bifunctional purine biosynthesis protein (gene *purH*), (S22: up-regulated 1.6-fold in adults) is implicated in nucleotide and metabolic processes and IMP cyclohydrolase activity. Glutamate semialdehyde dehydrogenase (S28: 1.3-fold) is related to the proline biosynthetic process, glutamate 5-kinase activity, nucleotide binding and metabolic processes. Electron transfer flavoprotein subunit a (S39: 2.5-fold) is related to DNA repair, protein-chromophore linkage, DNA binding, deoxyribodipyrimidine photolyase activity, nucleotide binding, enzymatic activity and ion transport. Seven protein spots implicated in somatic muscle development and differentiation, as structural constituents of the skeleton, in tracheal system development, and in movement and flight, were identified that had a significant increase from nymph to adult stage. Mainly, these proteins are suggested to be localized in the cytoplasm and cytoskeleton. These proteins are predicted as myosin heavy chain muscle isoform 1 (S32: 1.7-fold in adults), tubulin (S34, S62, S92, S97), actin and α -actin (S50, S58: 3.8- and 0.2-fold, respectively, in adults), tropomyosin 1 isoform a (S90: expressed in adults only), protein CBR-ACT-5 (S98) and serine carboxypeptidase (S13: 1.4-fold).

Proteins implicated in stress/defence/immunity were found in both stages. Most of these proteins were up-regulated in adults compared with nymphs. These proteins included triose phosphate isomerase (S1, S44: more than 1.7-fold), ATPase (S12: 3.5-fold; S41: two-fold; S66: 0.7-fold; S76: 0.5-fold; S89: only in adults), glutathione *S*-transferase-like protein (S14: 3.7-fold; S59: 0.99-fold; S67: 07-fold), heterogeneous nuclear ribonucleoprotein 87f (hrp36.1) (S16: 3.4-fold), cyclophilin-type peptidylprolyl cis-trans isomerases (S23: 1.4-fold), thioredoxin peroxidase (S15, S79) and peroxiredoxin (S43, S80), and Epsilon, an isoform of 14-3-3 protein (regulatory protein) (S86: adults only). Also, several heat chock protein spots such as putative heat shock cognate 70 protein (S42: 2.5-fold), heat shock protein 60, (S47, S56, S88: more than five-fold) and chaperonin Cpn60 (S48: 1.7-fold) were clearly up-regulated by 2.5-fold, more than five-fold and 1.7-fold in adults, respectively.

Proteins implicated in metamorphosis and development included haemolymph juvenile hormone binding protein (S63: 0.3-fold in adults), predicted annexin-b9-like (S71: 0.7-fold in adults) and nucleoside diphosphate kinase (S82: 0.7-fold in adults). Some proteins possibly involved in reproductive system functionality and mitotic division were also found. Heterogeneous nuclear ribonucleoprotein 87f (hrp36.1) (S16: 3.4-fold in adults) is implicated in female gonad development, oogenesis and mitotic nuclear division. Epsilon, an isoform of 14-3-3 protein, functions in protein binding, mitotic G2 DNA damage checkpoint, germarium-derived oocyte fate determination and the regulation of mitosis.

Other proteins implicated in neurogenesis increased in the adult stage, such as heterogeneous nuclear ribonucleoprotein 87f (hrp36.1) and tubulin (S34: 1.3-fold; S62: 0.6-fold; S92: only in adults; S97: only in adults). Succinyl-CoA synthetase α subunit

(S73), which is associated with nucleotide binding, enzymatic activity and neurogenesis, was down-regulated 0.5-fold in the adult stage. Two proteins implicated in adult life span were triose phosphate isomerase (S1: two-fold; S44: 1.7-fold) and Epsilon, an isoform of 14-3-3 protein.

Discussion

In the present study, 2-DE is combined with LC-MS/MS to identify proteins involved in the development of D. citri from the fifth-instar nymph to the adult stage. It is found that the total number of protein spots increases from the fifth-instar nymphs to the adult psyllids. The majority of proteins found to be common to both life stages show differences in their expression. Most proteins implicated in metabolic pathways, enzyme activities, binding and ion transport are present in both stages but show higher levels of expression in the adult stage. Significant increases are found in the levels of proteins related to structural constitution of the skeleton, stress/defence/immunity, reproduction system, muscles, locomotion and flight. These results are consistent with the fact that D. citri is a hemimetabolous insect; it goes through incomplete metamorphosis in which the nymph is morphologically similar to the adult and without a pupal stage. The main differences between the nymphal and adult stages are the development of wings, muscles, skeletal structures and maturity of the reproductive system. On the other hand, proteins that are involved in developmental regulation are found at a higher level in the nymph stage. Identification of these differentially expressed proteins advances our understanding of their roles in insect metamorphosis and development.

During the adult stage, the insects use more energy for metabolic processes that are required for movement, flight and reproduction. The majority of the 98 identified proteins in the present study are implicated variously in nucleotide binding. energy metabolism, glycolysis and lipid and carbohydrate metabolism. These proteins include phosphoglyceromutase, phosphoglycerate kinase, triose phosphate isomerase, glyceraldehyde 3-phosphate dehydrogenase and isocitrate dehydrogenase NAD-dependent. In Drosophila melanogaster, the transcripts of most of the glycolytic pathway genes initially increase, then decrease and increase again during the larval, pupal and adult stages, respectively (Roselli-Rehfuss et al., 1992). Four isoforms of the glycolytic enzyme enolase are higher in adult D. citri compared with nymphs. Additionally, two isoforms are detected only in adults. By contrast to the results with D. citri, the expression of enolase is highest in the fourth instar of the blister beetle Epicauta chinensis (Li et al., 2014).

ATP synthase subunits are more abundant in adult *D. citri* than in nymphs. Arginine kinase, which converts arginine-ATP into phosphoarginine-ADP (Cheung, 1973), plays a role in providing high amounts of ATP to flight muscles (Schneider *et al.*, 1989). In the present study, arginine kinase is up-regulated in adults, probably in keeping with the continual demand for ATP energy for use in flight and reproductive activities by adults compared with nymphs.

Many cytoskeletal protein spots are identified in the present study. These proteins include myosin heavy chain muscle isoform 1 protein, tubulin, actin, α -actin, tropomyosin 1 isoform a, protein CBR-ACT-5 and serine carboxypeptidase. The structure of *D. citri* nymphal stage exoskeleton is softer than the adult exoskeleton. Nymphs are soft bodied with many flexible membranes between sclerites and around articulation cavities (White & Hodkinson, 1985). A significant increase in these proteins is found in adults, in agreement with the fact that these proteins are involved in cytoskeleton organization.

Proteins such as triose phosphate isomerase, glyceraldehyde, glycerol 3-phosphate dehydrogenase, and phosphoglyceromutase, which are significantly increased in adults, are implicated in adult muscle development and locomotory processes and flight activities. Serine carboxypeptidase is implicated in long-term memory. In the present study, tropomyosin 1 isoform a (S90) is detected in adults only. Tropomyosin also binds protein and actin filaments, and regulates muscle contraction, lamellipodium assembly and pole plasm assembly (Cooper, 2002). Generally, an increase in skeletal proteins is found from the fifth-instar stage to adult stage, in agreement with having greater skeletal structures and muscles in the adult stage.

Some proteins that relate to stress, defence and immunity are found in both stages of D. citri. Most of these proteins, especially those related to heat, starvation and mechanical stimulation, are up-regulated in adults. Proteins involved in amino acid and carbohydrate metabolism are increased in the adult stage and are described as immune-responsive in haemolymph and cell line studies. Vierstraete et al. (2004) and de Morais Guedes et al. (2005) discuss the responses of cellular proteins to changes in metabolism as a result of oxidative stress. The threat for aerobic organisms, especially in adult stages, is the production of reactive oxygen species resulting in oxidative damage. Because of a higher demand for oxygen during the adult life stage, increases in reactive oxygen species and oxidative damage are assumed (Seehuus et al., 2006). Subsequently, adult insects generally invest in proteins related to reactive oxygen protection to minimize this damage. The upregulation of glutathione S-transferase-like protein in adult Asian citrus psyllid reflects its role in detoxification and oxidative stress response. It is also up-regulated in cases of infection in other insects and may have a protective role in immunity (Vierstraete et al., 2004; de Morais Guedes et al., 2005). Two forms of glutathione S-transferase-like protein are also identified as being up-regulated in the mosquito Anopheles gambiae in haemolymph after bacterial infection and after wounding (Paskewitz & Shi, 2005).

Oxidative stress reduces the lifespan of most organisms if not protected by adequate defence mechanisms (Finkel & Holbrook, 2000; Nyström, 2005; Seehuus *et al.*, 2006). It is assumed that the nymphal stages must also have an oxidative stress protection system. The current proteomic data suggest that other proteins such as peroxiredoxin-like protein (PRX) and thioredoxin peroxidase (TPX) might contribute to the reactive oxygen species tolerance during the nymph stage. These proteins belong to the peroxiredoxin anti-oxidative group of enzymes and are implicated in antioxidant activity and DNA repair, and may protect mammalian muscle from oxidative damage (Powers *et al.*, 1999). In the present study, PRX and TPX are relatively equally expressed in both stages. The main functions of PRX and TPX are detoxification, resistance against oxidative stress and immune reactions (Collins *et al.*, 2010). Thioredoxin peroxidase was identified first in the silkworm, *B. mori* and has a protective role against oxidative stress caused by temperature changes and viral infection (Lee *et al.*, 2005). It is up-regulated in aphids after parasitism treatments (Nguyen *et al.*, 2008), in larvae of *Plutella xylostella* treated with fipronil (Xie *et al.*, 2011) and in *D. melanogaster* haemolymph subsequent to fungal or bacterial challenge (Vierstraete *et al.*, 2004) or after feeding on bacterial lysates (de Morais Guedes *et al.*, 2005).

Similarly, protein spots identified as heat shock protein in the present study are clearly up-regulated in adults over the nymphal stage. Similarly, the heat shock protein, Hsc70 is down-regulated in the fourth and fifth larval instars of *E. chinensis* compared with adults (Li *et al.*, 2014). Heat shock proteins are particularly important for the transformation and thermotolerance of *Strongyloides venezuelensis* (Tsuji *et al.*, 1996). In *D. citri*, adults are able to tolerate a wider temperature range than nymphs and heat shock proteins are implicated in thermotolerance of the psyllid (Hall *et al.*, 2011).

Some proteins that have a role in insect development are found both in the nymph and adult stages of D. citri. Nucleoside diphosphate kinase (NDPK) protein (S82) is higher in the fifth-instar nymph stage than the adult stage (by 0.7-fold in adults). These results are consistent with a previous study from this laboratory showing that expression of abnormal wing disc gene, awd, which encodes for NDPK activity, increases gradually during the nymphal stages until it reaches a maximum level during the fifth-instar nymph, then decreases in the adult stage (El-Shesheny et al., 2013). The awd gene is implicated in wing disc development in insects (Timmons & Shearn, 2000; Jiang et al., 2010). Silencing awd using RNAi during the fifth-instar nymph stage of D. citri causes wing malformation in emerging adults (El-Shesheny et al., 2013). The product of awd in Antheraea pernyi is also shown to contribute to insect temperature tolerance (Jiang et al., 2010).

Annexin-b9-like (Anx B9) maintains cell polarity and the regulation of multivesicular body size, is involved in endosome transport, and is an actin and spectrin binding protein (Grewal *et al.*, 2000; Futter & White, 2007; Grewal & Enrich, 2009). Furthermore, it is implicated in development and wing disc dorsal-ventral pattern formation in *B. mori* (Shi *et al.*, 2013) and is steroid-induced during metamorphosis (Tanaka *et al.*, 2008). In the present study, Anx B9 and *awd* (abnormal wing disc) proteins have higher levels in the fifth-instar nymph stage than in adult stage (by 0.7-fold). A previous study from this laboratory reports similar results for ACP-*awd* expression (El-Shesheny *et al.*, 2013).

The Asian citrus psyllid reproductive system matures during the adult stage. Some proteins are found to be directly implicated in reproductive system function and mitotic divisions. Heterogeneous nuclear ribonucleoprotein 87f (Hrp36.1) (S16: 3.4-fold) is implicated in female gonad development, oogenesis and mitotic nuclear division. Epsilon, an isoform of 14-3-3 protein (S86), is found only in the adult stage. Tropomyosin, which is expressed in the adult stage, is implicated in oogenesis. Neurogenesis-related proteins are increased in the adult stage, such as Hrp36.1 and tubulin, whereas succinyl-CoA synthetase α subunit (S73) is decreased by 0.5-fold. S73 is involved in nucleotide binding, enzymatic activity and neurogenesis. The triose phosphate isomerase protein, which is involved in neurological processes and determination of the adult lifespan (Voelker *et al.*, 1979), is increased by 1.7-fold in the adult stage.

Utilization of a proteomics approach to determine stage-related proteins during the developmental of *D. citri* will help determine the molecular mechanisms of development. The identified variable proteins such as Awd and AnxB9 may provide useful targets for RNAi with respect to arresting the metamorphosis of juvenile Asian citrus psyllid and possibly interrupting transmission of *C*Las phytopathogen.

Acknowledgements

We thank Shelley Jones for technical assistance and correction of the English in the manuscript submitted for publication. We also thank our laboratory members for helpful discussions. Ibrahim El-Shesheny was supported by a scholarship from the Egyptian government. This work was supported by grant number 2015-70016-23011 from USDA NIFA SCRI.

References

- Bové, J.M. (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. *Journal of Plant Pathology*, 88, 7–37.
- Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry*, **72**, 248–254.
- Cancino-Rodezno, A., Lozano, L., Oppert, C. et al. (2012) Comparative proteomic analysis of Aedes aegypti larval midgut after intoxication with Cry11Aa toxin from Bacillus thuringiensis. PLoS ONE, 7, e37034.
- Candiano, G., Bruschi, M., Musante, L. *et al.* (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. *Electrophoresis*, 25, 1327–1333.
- Carmena, A. (2009) Approaching *Drosophila* development through proteomic tools and databases: at the hub of the post-genomic era. *Mechanisms of Development*, **126**, 761–770.
- Chavarria, N.E., Hwang, S., Cao, S. *et al.* (2014) Archaeal Tuc1/Ncs6 homolog required for Wobble Uridine tRNA thiolation is associated with ubiquitin-proteasome, translation, and RNA processing system homologs. *PLoS ONE*, 9, e99104.
- Cheung, A.C.F. (1973) Kinetic properties of arginine phosphokinase from honeybees, *Apis mellifera* L. (Hymenoptera, Apidae). *Archives* of Biochemistry and Biophysics, **154**, 28–39.
- Christophides, G.K., Zdobnov, E., Barillas-Mury, C. *et al.* (2002) Immunity-related genes and gene families in *Anopheles gambiae*. *Science*, **298**, 159–165.
- Collins, R.M., Afzal, M., Ward, D.A. *et al.* (2010) Differential proteomic analysis of *Arabidopsis thaliana* genotypes exhibiting resistance or susceptibility to the insect herbivore, *Plutella xylostella. PLoS ONE*, 5, e10103.
- Cooper, J.A. (2002) Actin dynamics: tropomyosin provides stability. *Current Biology*, **12**, R523–R525.
- El-Shesheny, I., Hajeri, S., El-Hawary, I. *et al.* (2013) Silencing abnormal wing disc gene of the Asian citrus psyllid, *Diaphorina citri* disrupts adult wing development and increases nymph mortality. *PLoS ONE*, 8, e65392.
- Elzinga, D.A. & Jander, G. (2013) The role of protein effectors in plant– aphid interactions. *Current Opinion in Plant Biology*, 16, 451–456.

- Finkel, T. & Holbrook, N.J. (2000) Oxidants, oxidative stress and the biology of ageing. *Nature*, 408, 239–247.
- Futter, C.E. & White, I.J. (2007) Annexins and endocytosis. *Traffic*, 8, 951–958.
- Grafton-Cardwell, E.E., Godfrey, K.E., Rogers, M.E. et al. (2005) Asian Citrus Psyllid [WWW document]. URL http://ccpp.ucr.edu/ news/PsyllidbrochureAug05.pdf [accessed on 17 June 2015].
- Grewal, T. & Enrich, C. (2009) Annexins modulators of EGF receptor signalling and trafficking. *Cellular Signalling*, 21, 847–858.
- Grewal, T., Heeren, J., Mewawala, D. *et al.* (2000) Annexin VI stimulates endocytosis and is involved in the trafficking of low density lipoprotein to the prelysosomal compartment. *Journal of Biological Chemistry*, 275, 33806–33813.
- Gygi, S.P., Rochon, Y., Franza, B.R. & Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. *Molecular and Cellular Biology*, **19**, 1720–1730.
- Hall, D.G., Wenninger, E.J. & Hentz, M.G. (2011) Temperature studies with the Asian citrus psyllid, *Diaphorina citri*: cold hardiness and temperature thresholds for oviposition. *Journal of Insect Science*, 11, 83.
- Hou, Y., Zou, Y., Wang, F. *et al.* (2010) Comparative analysis of proteome maps of silkworm hemolymph during different developmental stages. *Proteome Science*, 8, 45.
- Jiang, D.F., Liu, Y.Q., Li, X.S. & Shi, S.L. (2010) Characterization of the Antheraea pernyi abnormal wing disc gene that may contribute to its temperature tolerance. African Journal of Biotechology, 9, 7372–7378.
- Keller, A., Nesvizhskii, A.I., Kolker, E. & Aebersold, R. (2002) Empirical statistical model to estimate the accuracy of peptide identification made by MS/MS and database search. *Analytical Chemistry*, 74, 5383–5392.
- Kennedy, S. (2002) The role of proteomics in toxicology: identification of biomarkers of toxicity by protein expression analysis. *Biomarkers*, 7, 1–22.
- Lee, K.S., Kim, S.R., Park, N.S. et al. (2005) Characterization of a silkworm thioredoxin peroxidase that is induced by external temperature stimulus and viral infection. *Insect Biochemistry and Molecular Biol*ogy, 35, 73–84.
- Li, Q., Wang, D., Lv, S.M. & Zhang, Y. (2014) Comparative proteomics and expression analysis of five genes in *Epicauta chinensis* larvae from the first to fifth instar. *PLoS ONE*, **9**, e89607.
- de Morais Guedes, S., Vitorino, R., Domingues, R. et al. (2005) Proteomics of immune-challenged Drosophila melanogaster larvae hemolymph. Biochemical and Biophysical Research Communications, 328, 106–115.
- Nesvizhskii, A.I., Keller, A., Kolker, E. & Aebersold, R. (2003) A statistical model for identifying proteins by tandem mass spectrometry. *Analytical Chemistry*, **75**, 4646–4658.
- Nguyen, T.T.A., Boudreault, S., Michaud, D. & Cloutier, C. (2008) Proteomes of the aphid *Macrosiphum euphorbiae* in its resistance and susceptibility responses to differently compatible parasitoids. *Insect Biochemistry and Molecular Biology*, **38**, 730–739.
- Nyström, T. (2005) Role of oxidative carbonylation in protein quality control and senescence. *EMBO Journal*, 24, 1311–1317.
- Ong, S.E. & Pandey, A. (2001) An evaluation of the use of two-dimensional gel electrophoresis in proteomics. *Biomolecular Engineering*, 18, 195–205.
- Paskewitz, S.M. & Shi, L. (2005) The hemolymph proteome of Anopheles gambiae. Insect Biochemistry and Molecular Biology, 35, 815–824.

- Powers, S.K., Ji, L.L. & Leeuwenburgh, C. (1999) Exercise traininginduced alterations in skeletal muscle antioxidant capacity: a brief review. *Medicine and Science in Sports and Exercise*, **31**, 987–997.
- Roselli-Rehfuss, L., Ye, F., Lissemore, J. & Sullivan, D. (1992) Structure and expression of the phosphoglycerate kinase (Pgk) gene of *Drosophila melanogaster. Molecular and General Genetics MGG*, 235, 213–220.
- Salganik, M., Venkatakrishnan, B., Bennett, A. *et al.* (2012) Evidence for pH-dependent protease activity in the adeno-associated virus capsid. *Journal of Virology*, **86**, 11877–11885.
- Schneider, A., Wiesner, R.J. & Grieshaber, M.K. (1989) On the role of arginine kinase in insect flight muscle. *Insect Biochemistry*, **19**, 471–480.
- Seehuus, S.C., Krekling, T. & Amdam, G.V. (2006) Cellular senescence in honey bee brain is largely independent of chronological age. *Experimental Gerontology*, **41**, 1117–1125.
- Sharma, R., Komatsu, S. & Noda, H. (2004) Proteomic analysis of brown planthopper: application to the study of carbamate toxicity. *Insect Biochemistry and Molecular Biology*, 34, 425–432.
- Shi, L. & Paskewitz, S.M. (2006) Proteomics and insect immunity. *Invertebrate Survival Journal*, 3, 4–17.
- Shi, X.F., Bin, H., Li, Y.N. *et al.* (2013) Proteomic analysis of the phenotype of the scaleless wings mutant in the silkworm, *Bombyx mori. Journal of Proteomics*, 78, 15–25.
- Tanaka, H., Ishibashi, J., Fujita, K. *et al.* (2008) A genome-wide analysis of genes and gene families involved in innate immunity of *Bombyx mori*. *Insect Biochemistry and Molecular Biology*, 38, 1087–1110.
- Timmons, L. & Shearn, A. (2000) Role of AWD/nucleoside diphosphate kinase in *Drosophila* development. *Journal of Bioenergenetics and Biomembranes*, 32, 293–300.
- Tsuji, N., Ohta, M. & Fujisaki, K. (1996) Expression of a 70-kDa heat-shock-related protein during transformation from free-living infective larvae to the parasitic stage in *Strongyloides venezuelensis*. *Parasitology Research*, 83, 99–102.
- Vierstraete, E., Verleyen, P., Sas, F. et al. (2004) The instantly released Drosophila immune proteome is infection-specific. Biochemical and Biophysical Research Communications, 317, 1052–1060.
- Voelker, R.A., Ohnishi, S. & Langley, C.H. (1979) Genetic and cytogenetic studies of four glycolytic enzymes in *Drosophila melanogaster*: Aldolase, triosephosphate isomerase, 3-phosphoglycerate kinase, and phosphoglucomutase. *Biochemical Genetics*, **17**, 769–783.
- White, I.M. & Hodkinson, I.D. (1985) Nymphal taxonomy and systematics of Psylloidea (Homoptera). *Bulletin of the British Museum* (*Natural History*) *Entomology*, **50**, 153–301.
- Wu, G., Zhu, J., Li, K. et al. (2013) A proteomic analysis of larval midguts of *Boettcherisca peregrina* in response to cadmium. *Bulletin* of Insectology, 66, 225–229.
- Xie, M., You, M.-S., Cheng, J. & Vasseur, L. (2011) A proteomic analysis of short-term exposure to fipronil in larvae of *Plutella xylostella*. African Journal of Biotechnology, **10**, 17599–17609.
- Zhang, Y., Dong, Z., Wang, D. *et al.* (2014) Proteomics of larval hemolymph in *Bombyx mori* reveals various nutrient-storage and immunity-related proteins. *Amino Acids*, 46, 1021–1031.
- Zheng, A., Li, J., Begna, D. *et al.* (2011) Proteomic analysis of honeybee (*Apis mellifera* L.) pupae head development. *PLoS ONE*, **6**, e20428.

Accepted 11 March 2016 First published online 18 April 2016