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Citrus Huanglongbing (HLB) is becoming the most devastating citrus disease worldwide. Although no
known HLB-resistant citrus species or varieties have been identified, some citrus accessions such as
rough lemon are reportedly tolerant. To better understand the HLB tolerance or susceptibility mecha-
nisms in citrus, comparative anatomical analyses of tolerant rough lemon and sensitive sweet orange
seedlings in response to HLB-associated bacterium, ‘Candidatus Liberibacter asiaticus’, were performed
on leaf, stem and root tissues using light microscopy and transmission electron microscopy. Phloem
collapse, plugged sieve elements and accumulation of starch were observed in leaf petioles of symp-
tomatic leaves from both HLB-diseased rough lemon and sweet orange, while not in the mock-inoculated
controls. Interestingly, in symptomless leaves, significant anatomical changes (e.g. phloem cell collapse
and starch accumulation) were found in HLB-diseased sweet orange, but not in rough lemon. Further-
more, starch depletion, phloem cell collapse and absence of phloem fibers were observed in secondary
roots of only diseased sweet orange. In young green stems, a few plugged sieve elements were seen in
both diseased rough lemon and sweet orange; whereas starch deposition only occurred in the latter.
Taken together at the whole plant level, HLB infection induces fewer disruptive anatomical changes in
rough lemon than in sweet orange. In particular, the absence of obvious changes in the rough lemon root
system is suggested to be critical for sustaining plant growth after infection, and may contribute greatly
to its HLB tolerance.

� 2013 Published by Elsevier Ltd.
86
87

88

89
90
91
92
93
94
95
96
97
98
99

100
101
102
1. Introduction

The citrus industry in Florida (USA) and many other citrus-
producing countries worldwide is being threatened by Huan-
glongbing (HLB, or citrus greening). HLB is presumably caused by
‘Candidatus Liberibacter spp.’, a gram-negative phloem-limited
a-Proteobacteria transmitted by the phloem-feeding Asian citrus
psyllid (ACP),Diaphorina citri. There are three knownHLB-associated
Ca. L. species, namely Ca. L. asiaticus (CLas), Ca. L. africanus and Ca. L.
americanus [1]. CLas, causing the most devastating HLB, was first
found in Florida in 2005.

HLB-affected citrus plants often display typical symptoms such
as yellow shoots and leaf blotchy mottle. Fruits on affected trees
may be abnormally small, lopsided with color inversion or/and
ticus’; HLB, Huanglongbing;
roscopy.
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have aborted seed. Previously, Schneider [2] used light microscopy
and observed massive starch accumulation, disruption of chloro-
plasts and phloem collapse in leaves of HLB-affected sweet orange.
He suggested that the phloem block may impair the transport of
photoassimilate, in turn leading to starch accumulation in diseased
leaves, and leaf yellowing or mottling symptom [2]. Etxeberria et al.
[3] investigated the distribution of starch throughout HLB-affected
sweet orange plants using microscopy. They found that more starch
accumulated in all aerial tissues from HLB-affected plants than
those from HLB-negative control plants; by contrast, starch was
depleted in roots of diseased trees while substantial starch deposits
were observed in control ones. It is likely that the carbohydrate
partitioning imbalance throughout the diseased tree may cause
root death and eventually tree decline [3]. Achor et al. [4] proposed
a sequence of HLB symptom development, i.e. phloem plugging and
collapse followed by sugar backup, prior to starch accumulation in
leaves with resulting chlorosis. Two types of phloem plugging
materials, amorphous callose and filamentous phloem protein 2
(PP2), were identified in sieve elements of HLB-diseased citrus
leaves [4,5].
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To date, no known citrus species, varieties or combinations of
scion and rootstock have been identified to be resistant to HLB.
However, host response and symptom development are different
among citrus genotypes in the greenhouse and field [6,7]. In gen-
eral, sweet oranges and grapefruits are very sensitive; by contrast,
some lemons, limes and trifoliate orange (Poncirus trifoliata L. Raf.)
possess some levels of tolerance, showing less severe symptoms
andmuch slower (or no) decline [6]. To understand the mechanism
of HLB pathogenesis, much work has been done on sweet orange to
reveal the changes of metabolites, gene expression profiles and
anatomical structures upon CLas infection [3e5,8e14].

Despite the reports on transcriptional and metabolomic re-
sponses of tolerant and susceptible citrus to the infection of CLas
[15,16], the HLB tolerance and susceptibility mechanisms are still
not well known. In this study, the anatomical changes of rough
lemon (tolerant) and sweet orange (sensitive) at whole plant level
in response to CLas under controlled conditions in the greenhouse
were compared. The results will contribute to a more complete
understanding of HLB tolerance and susceptibility mechanisms in
citrus.

2. Materials and methods

2.1. Plant materials

Two-year-old seedlings of rough lemon (Citrus jambhiri Lush.)
and ‘Madam Vinous’ sweet orange (Citrus sinensis L. Osbeck) were
graft-inoculated with bud-wood from CLas-infected Carrizo cit-
range (Citrus sinensis L. Osbeck � Poncirus trifoliata L. Raf.), and
control plants were grafted with bud-wood from pathogen-free
Carrizo. All plants were kept in a U.S. Department of Agriculture-
APHIS/CDC-approved and secured greenhouse at University of
Florida, Citrus Research and Education Center, Lake Alfred, FL.
Quantitative real-time PCR was performed to confirm the presence
of CLas [17]. One year after inoculation representing an advanced
stage of HLB disease, CLas-inoculated sweet orange plants dis-
played severe symptoms such as leaf blotchy mottle and yellowing,
and tree decline; although obvious leaf mottling symptom was
observed, CLas-inoculated rough lemon plants continued flushing
without stunted growth. Multiple leaf, young green stem and sec-
ondary root samples were collected from at least three individual
plants of CLas- or mock-inoculated rough lemon or sweet orange.
Leaves with or without HLB symptoms were sampled separately
from CLas-inoculated plants.

2.2. Light microscopy (LM) and transmission electron microcopy
(TEM)

Leaf petioles, stems and roots were collected from citrus plants
in the greenhouse, and immediately cut into pieces approximately
2e3 mm square and fixed in 3% glutaraldehyde in 0.1 M potassium
phosphate buffer (pH 7.2) for 4 h at room temperature, or overnight
in the refrigerator. As described by Etxeberria et al. [3], the fixed
samples were then post-fixed in 2% osmium tetroxide for 4 h at
room temperature, dehydrated in an acetone series and embedded
in Spurr’s resin Ref. [18] with a modified formula (10 ml ERL 4221,
25 ml NSA, 6.5 ml DER 736, 0.3 ml DMAE). LM and TEM sections
were prepared and stained as described [3]. Briefly, 1 mm sections
were cut with glass knives and stained with methylene blue/azure
A and basic fuchsin for LM [19]. A Leitz Laborlux S compound mi-
croscope (Germany) attached with a Canon Powershot S31S digital
camera (Tokyo, Japan) was used to take LM micrographs. For TEM,
100 nm sections were cut with a diamond knife, stained with 2% aq.
uranyl acetate and poststained with lead citrate [19]. An AMT
(Advanced Microscopy Techniques Corp., Danvers, MA) digital
Please cite this article in press as: Fan J, et al., Differential anatomical re
‘Candidatus Liberibacter asiaticus’, Physiological and Molecular Plant Path
camera on a Morgagni 268 (FEI Company, Hillsboro, OR) trans-
mission electron microscope was used to generate TEM micro-
graphs. Since multiple sections sampled from at least three
individual plants were carefully examined, sampling error leading
to differential microscopic responses between rough lemon and
sweet orange has been reduced to a minimum.

3. Results

3.1. Differential microscopic changes occurred between
symptomless leaves of HLB-diseased rough lemon and sweet orange

To find out why HLB-affected rough lemon can sustain growth
albeit typical leaf symptoms can be observed as in HLB-affected
sweet orange, the anatomical changes within leaf petioles from
HLB-affected symptomless and symptomatic leaveswere compared
with mock-inoculated controls. In diseased rough lemon, large
quantities of starch accumulated in pith, cortex, and xylem cells of
leaf petioles from symptomatic leaves (Fig. 1C and F). Phloem
pluggingmaterial presumed to be callose (blue arrows in Fig.1F and
its left-lower inset) and excessive phloem formation (Fig. 1C and F)
were also observed in these samples. Interestingly, no obvious
changes were seen in petioles of symptomless leaves (Fig.1B and E),
except very few plugged phloem cells (Fig. 1E, blue arrows). By
contrast, petioles of symptomless leaves from diseased sweet or-
ange displayed dramatic anatomical changes, that included starch
accumulation in pith, xylem parenchyma and phloem parenchyma
(Fig. 1H and K), phloem plugging (Fig. 1K) and thickened phloem
tissue (Fig. 1H and K). More severe microscopic disorders were
found in symptomatic leaves of sweet orange (Fig. 1I and L), espe-
cially starch deposition in phloem parenchyma and phloem
distortion and excessive formation (Fig. 1L), which are consistent
with previous microscopic results [2,3,5]. TEM micrographs dis-
playing the phloem area further confirmed that callose-plugged
sieve elements, collapsed phloem (asterisks in Fig. 2B, C, E, F) and
starch deposition in phloem parenchyma were commonly found in
leaf petioles of diseased rough lemon (Fig. 2B and C) and sweet or-
ange (Fig. 2E and F).

3.2. Differential anatomical changes in stems and roots of
HLB-diseased rough lemon and sweet orange

Upon infection and disease progression, the microscopic struc-
ture of stems underwent obvious changes in both HLB-affected
rough lemon (Fig. 3B) and sweet orange (Fig. 3F) when compared
with their mock-inoculated controls (Fig. 3A and E, respectively). A
few plugged phloem sieve elements were observed in young green
stems of diseased rough lemon (Fig. 3B, blue arrows), while a
number of starch granules formed in xylem and pith cells of
diseased sweet orange (Fig. 3F, yellow arrows). Under TEM, small
starch granules were found in some sieve elements of mock-
inoculated rough lemon stems (Fig. 4A), whilst callose-plugged
sieve elements were displayed in diseased stems (Fig. 4B). In the
phloem area of sweet orange stems, no significant change was
detected in either control or diseased samples (Fig. 4E and F).

In healthy rough lemon or sweet orange, a large amount of
starch was stored in roots (Fig. 3C and G, yellow arrows). Surpris-
ingly, remarkable starch depletion was observed in xylem and
phloem cells of diseased sweet orange roots, although there were
some starch granules in cortex cells (Fig. 3H). Furthermore, phloem
appeared collapsed and no well-organized phloem fibers were
observed in these samples (Fig. 3H). Stored starch was occasionally
found in phloem and xylem parenchyma cells of root samples from
diseased sweet orange (data not shown), but collapsed phloem cells
were commonly detected (Fig. 3H). It is suggested that root phloem
sponses of tolerant and susceptible citrus species to the infection of
ology (2013), http://dx.doi.org/10.1016/j.pmpp.2013.05.002



Fig. 1. Light micrographs of cross sections of leaf midribs from rough lemon and sweet orange. (A), (B), (C) represent midribs from rough lemon healthy control leaves, HLB-diseased
symptomless leaves, symptomatic leaves, respectively. (D), (E), (F) are close-ups of (A), (B), (C) respectively. (G), (H), (I) represent midribs from sweet orange healthy control leaves,
HLB-diseased symptomless leaves, symptomatic leaves, respectively. (J), (K), (L) are close-ups of (G), (H), (I) respectively. The right-upper and left-lower inset in (F) indicates starch
deposition in pith parenchyma cells and plugging material in phloem sieve elements, respectively. Co, cortex; Fi, fiber; P, phloem; Pi, pith; X, xylem. Non-lignified/cellulose cell walls
were stained red or purple, cytoplasm blue, and starch granules red. The blue spots indicated by blue arrows represent phloem plugging. The red granules indicated by yellow
arrows represent starch. Bars ¼ 100 mm (AeC, GeL) and 50 mm (DeF). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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sieve element and companion cell collapse is prior to starch
depletion in the disease progression of CLas-infected sweet orange.
By contrast, no obvious changes were seen in LM micrographs of
diseased rough lemon roots, and stored starch was mainly
remained in xylem (Fig. 3D, yellow arrows). TEM observations
showed that some starch granules accumulated in phloem paren-
chyma cells of both control roots (rough lemon and sweet orange)
and diseased rough lemon roots (Fig. 4C, D, G), but not in diseased
sweet orange roots (Fig. 4H). In addition, distorted sieve elements
were found in diseased sweet orange samples (Fig. 4H, asterisks),
and swelling of middle lamella between cell walls surrounding
sieve elements were sometimes detected in disease rough lemon
(Fig. 4D, triangles).

Furthermore, the root systems of rough lemon and sweet orange
seedlings were examined (Fig. 5). Compared with the vigorous
root system of mock-inoculated sweet orange seedlings (Fig. 5C),
the secondary roots of HLB-diseased sweet orange were partially
rotted (Fig. 5D) or completely degraded (Fig. 5E). By contrast, no
obvious root rot or degradation was found in HLB-affected rough
lemon seedlings (Fig. 5B). Together with the anatomical results, it is
Please cite this article in press as: Fan J, et al., Differential anatomical re
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suggested that starch depletion and phloem cell collapse in sec-
ondary roots (Fig. 3H) are closely related to the severe damage of
root system in HLB-diseased sweet orange seedlings (Fig. 5D and E).

4. Discussion

The putative causal agent of HLB, CLas, is a phloem-inhabiting
gram-negative bacterium, of which the nature of pathogenicity
remains unclear. Substantial evidence indicates that phloem ne-
crosis and phloem plugging often occur in HLB-diseased citrus
plants [2,4,5], which likely leads to the impairment of photo-
assimilate transport from source organs (i.e. mature leaves) to sink
organs (e.g. roots), in turn resulting in metabolism imbalance and
tree decline [3,20]. However, different citrus species and varieties
exhibit varied sensitivities to CLas infection [6]. Once infected,
sweet orange plants display severe leaf symptoms, stunted growth
and tree decline; whereas, rough lemon can continue flushing
without obvious growth inhibition, although leaf symptoms can be
expressed. It was then hypothesized that the phloem system in
diseased rough lemon seedlings may be less affected than
sponses of tolerant and susceptible citrus species to the infection of
ology (2013), http://dx.doi.org/10.1016/j.pmpp.2013.05.002



Fig. 2. Transmission electron micrographs of cross sections of leaf midribs from rough lemon and sweet orange displaying the phloem area. Phloem cells were well-organized in
healthy control samples of rough lemon (A) and sweet orange (D). Collapsed phloem cells, plugged sieve elements and starch accumulation were commonly found in HLB-diseased
symptomatic leaf samples of rough lemon (B, C) and sweet orange (E, F). Ca, callose (presumed); SE, sieve element; St, starch; P, phloem; X, xylem; *, phloem cell collapse.
Bars ¼ 10 mm (A, B, D, E) and 2 mm (C, F).
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in diseased sweet orange seedlings. In this work, differential
anatomical changes of rough lemon and sweet orange infectedwith
CLas were revealed (Figs. 1 and 2).

No significant anatomical changewas detected in leaf petioles of
symptomless leaves fromHLB-affected rough lemon (Fig. 1B and E),
compared with mock-inoculated controls (Fig. 1A and D). It is
suggested that these leaves may still carry out normal functions as
healthy leaves, such as transport of photoassimilates in the phloem
from source leaves to other plant parts. This implication is sup-
ported by a recent work that functional phloem transportation was
observed in midribs of HLB-diseased rough lemon leaves, surpris-
ingly including symptomatic leaves [21]. By contrast, leaf petioles of
symptomatic and some symptomless leaves in sweet orange
Fig. 3. Light micrographs of cross sections of stems and roots from rough lemon (A, B, C, D) a
controls (A, E) and HLB-diseased plants (B, F); secondary roots were sampled from mock-ino
pith; *, degraded phloem cells. Non-lignified/cellulose cell walls were stained red or purp
represent phloem plugging. The red granules indicated by yellow arrows represent starch.
reader is referred to the web version of this article.)

Please cite this article in press as: Fan J, et al., Differential anatomical re
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underwent dramatic phloem plugging and phloem cell collapse
(Fig. 1H, I, K, L), resulting in the inhibition of phloem transport [21].
Consequently, the carbohydrate partitioning in the whole plant
could be impaired in diseased sweet orange [3,8], causing more
severe damages than in diseased rough lemon.

Intriguingly, starch depletion and phloem cellcollapse were
observed in secondary roots from HLB-diseased sweet orange
(Fig. 3H) but not in those from diseased rough lemon (Fig. 3D).
Roots in healthy plants are important repositories for carbohy-
drates, usually in the form of starch granules, providing energy for
plants surviving stress and dormancy [22]. Depletion of starch in
roots could lead to root death and ultimately to tree decline, which
has been observed in HLB-diseased sweet orange trees grown on
nd sweet orange (E, F, G, H). Young (green) stems were sampled from mock-inoculated
culated controls (C, G) and HLB-diseased plants (D, H). Fi, fiber; P, phloem; X, xylem; Pi,
le, cytoplasm blue, and starch granules red. The blue spots indicated by blue arrows
Bars ¼ 100 mm. (For interpretation of the references to color in this figure legend, the
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Fig. 4. Transmission electron micrographs of cross sections of stems and roots from rough lemon A, B, C, D) and sweet orange (E, F, G, H) displaying the phloem area. Young (green)
stems were sampled from mock-inoculated control (A, E) and HLB-diseased plants (B, F); secondary roots were sampled from mock-inoculated control (C, G) and HLB-diseased
plants (D, H). Ca, callose; SE, sieve element; St, starch; *, collapsed phloem cells; white triangles indicate swollen middle lamella between cell walls surrounding sieve ele-
ments. Bars ¼ 2 mm.
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various rootstocks in the field. It is suggested that the root starch is
consumed to maintain root metabolismwhen little carbohydrate is
transported down from the source leaves due to impaired phloem
transportation in HLB-diseased sweet orange [3,21]. However, it
should be noted that the extent of starch depletion in diseased
roots is associatedwith the stage of HLB infection. For instance, root
Fig. 5. Visual observation of the root system of rough lemon and sweet orange seedli
graft-inoculation of CLas, and their root systems were photographed. (A) and (B), root
mock-inoculated sweet orange. (D) and (E), roots of CLas-inoculated sweet orange plants. P
orange, but not in diseased rough lemon (B).

Please cite this article in press as: Fan J, et al., Differential anatomical re
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starch may not be totally depleted in the infected plants before
getting to the advanced stage of infection characterized by tree
decline and root rot.

Root phloem fiber consists of sclerenchymatous cells and func-
tions as the physical supporting structure of the root. The absence
of well-organized phloem fiber could cause damage to the structure
ngs infected with CLas. The plants were pulled out from the pots one year after
s of mock-inoculated and CLas-inoculated rough lemon, respectively. (C), roots of
artially rotted (D) or completely degraded (E) roots were observed in diseased sweet
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of roots, leading ultimately to the decline of the root system. Since
the formation of phloem fiber requires a large amount of carbo-
hydrates, high expression levels of sugar transporter genes are
usually detected in root tissue; e.g. Medicago truncatula MtSt1 (a
sugar transporter gene) is highly expressed in root phloem fibers
[23]. In HLB-diseased sweet orange, it is believed that it is difficult
for adequate amounts of sugars to be translocated from leaves to
roots due to the plugged phloem system, which may inhibit the
development of phloem fibers in roots and eventually result in
disruption of the root system (Fig. 5D and E). Conversely, the
absence of starch depletion and phloem collapse in roots of HLB-
diseased rough lemon suggests that the root system of rough
lemon may be still functional. As observed visually in the green-
house grown seedlings, the root system of infected rough lemon
plants was comparable to that of mock-inoculated controls (Fig. 5A
and B). Thus, the root metabolic activities in diseased rough lemon
are likely to be sufficiently sustained to support plant growth. It has
been reported that HLB can restructure the bacterial community
associated with sweet orange roots and in the rhizosphere [24,25].
These results should be expected according to the findings in the
present study that the root system of HLB-affected sweet orange
seedlings underwent damage and death (Fig. 5D and E). However, it
is uncertainwhether the bacterial community associatedwith roots
and rhizosphere of rough lemon seedlings is restructured by HLB,
as no clear symptoms of root damage and root death were found in
diseased rough lemon seedlings (Fig. 5B). The sustained vigorous
root system of rough lemon upon CLas infection may be a critical
factor of its tolerance to HLB disease.

In conclusion, comparative microscopy analysis of rough lemon
and sweet orange in response to CLas infection indicates that much
less phloem damage occur in rough lemon than in sweet orange,
especially in leaf petioles of symptomless leaves and secondary
roots. These differences likely contribute to HLB tolerance of rough
lemon or susceptibility of sweet orange.
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