Citrus Greening in the Indian Punjab

O. P. GUPTA, J. P. NAURIYAL, and L. C. KNORR

ON THE BASIS of symptoms, Fraser and Singh (2) presumed the existence of greening disease in the Punjab Plain, and on the basis of an indexing of several trees in the area, Nariani, Raychaudhuri, and Bhalla (4) demonstrated the presence of the causal agent. The incidence of greening in the Punjab and the role of this disease in India's so-called citrus decline are considered here.

Geographical Distribution

The incidence of greening disease in citrus plantations of Punjab and adjacent areas of Rajasthan, Himachal Pradesh, and Uttar Pradesh was determined by chromatographic procedures that relate the presence of greening with a marker substance, gentisoyl glucose (1, 6). While it is recognized that determinations of the greening marker
substance are not equivalent to
demonstrations of the causal patho-
gen, equating the two seems justi-
fiable on the bases of extensive
testing by Schwarz (6) and suc-
cesses attending use of the chro-
matographic test for commercial
control of greening in South Africa.
Subject to this proviso, and for the
sake of convenience, the following
discussion assumes the relatedness
of marker substance and pathogen.

Samples of bark from 2-year-old
twigs—occasionally from bark from
across the bud unions and from roots
—were collected from April 6 through
August 16, 1969. In each orchard, a
random row of trees was selected,
and from these trees, irrespective
of their condition, samples were taken.
The trees were 1–25 years in age.

Bark samples were extracted in 70
per cent ethanol, and the extractant
was decanted and evaporated under
reduced pressure. Residues were
dissolved in ethanol and spotted on
Whatman No. 1 chromatographic
paper; a water-saturated n-butanol
carrier was used. Chromatograms
were examined under a UV lamp
(Hanovia Model IV), transmitting 95
per cent of its radiation at 366 nm.
Periodically, extracts were sent to Dr.
R. E. Schwarz, Nelspruit, South Afri-
can, for confirmation of results; the
extent of agreement was high.

Ratios of the number of trees show-
ing the marker substance to those
tested at various locations were:
Abohar (Pb.), 115/208; Attari (Pb.),
73/80; Chattori (Himachal Pradesh),
11/15; Chanoor (H.P.), 11/11; Pap-
hu (H.P.), 13/13; Faridkot (Pb.),
16/20; Ludhiana (Pb.), 109/147;
Patiala (Pb.), 24/26; Hoshiarpur
(Pb.), 21/40; Dhaulakuan (H.P.),
26/40; and Saharanpur (Uttar Pra-
desh), 14/26. The incidence of the
marker substance for the area as a
whole was 69 per cent, 85 per cent
of which were clearly positive deter-
minations and 15 per cent of which
were questionable positives. The 31
per cent found negative is a com-
bination of 77 per cent clearly nega-
tive determinations and 23 per cent
questionable negatives.

Correspondence of chromatog-
graphic results with tree decline was
low. Frequently, trees producing
positive chromatograms showed no
leaf, fruit, or dieback symptoms of
greening. Failure of symptoms to
appear in trees found to be positive
chromatographically might result
from recency of infection or from
masking of symptoms by climatic
factors or malnutrition. In the case
of mandarin and possibly other var-
ieties, lack of correspondence might
be due to such varieties acting as
symptomless carriers.

Interestingly, samples collected
during May and June, when daily
noontime temperatures in the Pun-
jab range from 32 to 44°C, gave
about the same percentages of posi-
tive chromatographic readings as
samples taken during periods with
more moderate temperatures. This
result agrees with findings in Taiwan
and the Philippines that the Asian
greening pathogen is tolerant of high
temperature. It is apparent that the
marker substance under our condi-
tions is also heat stable.
No significance is attached to variations in the percentages of positives from place to place. That there are factors vitiating correlations of findings with geographical locations is illustrated by the situation at Abohar: here the overall percentage of trees containing the marker substance was 55, but in certain blocks it was 100. Such variations may be explained by the possibility that where all plants in a block contained the marker, such plants might have been inoculated with the pathogen before leaving the nursery.

Because of the manner of spot sampling, no conclusions could be drawn regarding the rate of vectored spread at various locations; psyllids (*Diaphorina citri* Kuw.) were, however, observed in large numbers only at Abohar and Ludhiana.

Though the greening marker was found in 69 per cent of all trees sampled, the incidence of infection might well be greater because of inadequacies in sampling procedures. Twig samples were taken from 4 sides of each tree; had more positions per tree been sampled, the incidence of the marker substance would undoubtedly have been found to be greater.

In nursery plants, positives were found in 25 per cent of tested subjects. In budded nursery plants (6/14) infection could have resulted from the use of infected budwood, but in seedlings (3/22) infection can only be attributed to psyllid transmission. No positives were encountered among 17 nucellar seedlings, 1–2 years old, reared in the screenhouse.

Varietal Susceptibility

The marker substance was detected in most varieties sampled including, among sweet orange varieties: Mosambi, Blood Red, Hamlin, Pineapple, Jaffa, Valencia, Tardiff, Navalencia, Golden Nugget, Vanille, and Joppa; among mandarin varieties and their hybrids: Santra, Kinnow, Orlando, Kara, Honey, Wilking, Minneola, and Pearl; among trifoliate orange varieties and their hybrids: common trifoliate orange, Carrizo, Savage, and Sacaton; among grapefruit varieties: Marsh Seedless; and among miscellaneous varieties: rough lemon, table lemon, and sweet lime. According to Dr. R. E. Schwarz, it is not yet certain whether the marker substance in trifoliate orange, its hybrids, rough lemon, and sweet lime correlates specifically with greening infection. Significance of the marker substance in these varieties remains to be determined. Those varieties for which the marker substance is known to indicate infection are given by Schwarz (7).

Among major scion varieties, the ratios of trees exhibiting the marker substance to the total number of trees examined were: Mosambi, 22/22; Blood Red, 87/119; Hamlin, 37/41; Pineapple, 26/28; Jaffa, 25/25; Valencia, 67/86; Santra mandarin, 23/29; and Kinnow, 12/42.

Unusual was the failure to obtain, either in twig or root samples, positive readings in a block of 8 16-year-old Cleopatra mandarin seedling trees free of decline or greening.
symptoms. In the same block, low incidences of the marker substance were shown by many of 23 other varieties imported 16 years ago from the United States. The overall rate of positives for these trees was 37 per cent, with some varieties having few or no trees with the marker—Carrizo citrange, 1/4; Troyer citrange, 1/3; Dancy tangerine, 0/4—whereas high incidences of the marker were shown by Pearl tangelo, 3/4; Valencia sweet orange, 4/4; and Marsh seedless grapefruit, 4/4. These rates closely parallel those given for tolerance by Fraser and Singh (3) and suggest that "tolerance" may actually involve resistance.

Localization of the Marker Substance within the Tree

Attempts were made to find the most reliable single site in sampling trees for the marker substance. Though this site was not determined, the search led to information on the distribution of the marker substance within individual trees.

In an experiment at Ludhiana involving 4 7-year-old greening-affected Blood Red sweet orange trees on rough lemon rootstock, samples were taken from twigs 6 months old, 1 year old, and 2 years old on 4 sides of each tree. Samples of bark were also taken from above and below the bud union and from roots.

The marker substance was encountered in 11 of 16 6-month-old twigs, in 11 of 16 1-year-old twigs, in 10 of 16 2-year-old twigs, in 4 of 4 bark patches above the bud union, in 3 of 4 bark patches below the bud union, and in 4 of 4 roots (Fig. 1).

The encouraging lead that the greening marker substance might be detected most consistently by sampling roots or bark above the bud union led to a search for information on the distribution of the marker substance within individual trees. In an experiment at Ludhiana involving 4 7-year-old blood red sweet orange trees on rough lemon rootstock, samples were taken from twigs 6 months old, 1 year old, and 2 years old on 4 sides of each tree. Samples of bark were also taken from above and below the bud union and from roots.

FIGURE 1. Diagram of four 7-year-old Blood Red sweet orange trees on rough lemon rootstocks at PAU Orchard, Ludhiana, showing localization of greening marker substance on July 12, 1969. Terminal portions in canopy represent 6-month-old twigs, penultimate portions 1-year-old twigs, and subpenultimate portions 2-year-old twigs. A. Bark patch above union. B. Bark patch below union.
union was not borne out, however, in subsequent testing of other trees where it was found that positives were registered in 20 of 23 trees in 2-year-old twigs, in 16 of 23 trees in bark above the bud union, in 11 of 23 trees in roots, and in 6 of 23 trees in bark below the bud union. In some cases, negative root chromatograms may have resulted from an inability of the rootstock species to elaborate the marker substance rather than to an absence of infection.

As shown in Figure 1, trees occasionally yield negative results when sampled at twigs while yielding positive results when sampled at the bud union or roots. To cover such contingencies, sampling should include roots or bud-union bark as well as twigs in the canopy.

Conclusions

Since 69 per cent of trees sampled contained the marker substance of greening disease, it is evident that greening is an important factor in the "citrus decline" problem of the Punjab. It is misleading, however, to suggest that greening alone is responsible for all the recent decline in the area. There are many other factors involved in the poor growth of trees, including high soil pH values, salinity, inadequate drainage, pernicious intercropping, poor pest control, and virus diseases—among which are tristeza and a combination of an eruptive bud-union crease and a fovealike pitting destructive to the predominantly grown varieties Musambi and Blood Red sweet oranges when budded on rough lemon (5).

Literature Cited