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Decision making is a key aspect of current integrated pest management (IPM) 
programs and will continue to play an important role as IPM programs mature 
(71, 106). In an IPM context, decision making relies on protocols for deciding 
on the need for some management action based on an assessment of the state 
of a pest population (and ideally its natural enemies). These protocols, which 
we refer to as control decision rules, consist of at least two components and 
may include a third: (a) a procedure for assessing the density of the pest 
population, (b) an economic threshold (63)';�and (c) a phenological forecast 
(e.g. 49), which is often necessary to determine the appropriate time to assess 
popUlation densities. Assessment of pest density usually requires obtaining 
actual counts of the pests, and therefore, sampling is important. Because 
sampling is time consuming and expensive, one must know how to gather 
enough information about pest abundance to be able to make correct decisions 
without incurring excessive costs. 

Decision making in IPM is important for two reasons. First, decision­
making protocols can be used to reduce pesticide use. Ideally, IPM relies on 
benign tactics such as biological control, plant resistance, and cultural prac­
tices to maintain fluctuating pest populations below economic injury levels. 
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428 BINNS & NYROP 

To make biological control work, in many crop-production systems one must 
begin by reducing the use of broad-spectrum insecticides and miticides; here, 
decision-making procedures can often help. The second reason why decision 
making is important in IPM is that if tactics such as biological control and 
cultural practices fail, pest control can still be accomplished through the 
effective use of pesticides, and decision-making protocols must be available 
to determine when to intervene. 

The purpose of this paper is to review the sampling component of pest­
control decision rules. We have provided few mathematical details because, 
first, the allotted space does not allow a detailed presentation of the mathema­
tics, which can be found elsewhere (57). Second, we wish to present the 
concepts behind the mathematics in as nonmathematical a form as possible. 
We also do not attempt to cite all the papers that report on applications of the 
concepts we review. Where appropriate, we cite illustrative work. 

The presentation is divided into five sections. First, we review some of the 
general aspects of sampling theory. Second, we describe models used to 
characterize sampling experiments. Third, we review methods that can be 
used to develop sampling procedures to provide either a density estimate or a 
classification into two or more categories. All the methods reviewed are 
sequential, because these are the methods of choice when sampling costs are 
critical. In the fourth section we comment on two aspects of sampling for 
decision making that are not well developed or thoroughly understood, yet in 
our opinion offer future opportunities. Finally, we review how to analyze the 
effect of sampling uncertainty on decision rule performance. 

GENERAL ASPECTS OF SAMPLING THEORY 

Cochran ( 1 5) and Southwood (89) describe the basic principles of sampling; 
Perry (66) discusses early advances in the theory of sampling that remain 
important. The reviews by Morris (52) and Strickland (93) remain useful 
summaries of most of the basic principles of pest sampling. Neither contains a 
single mathematical formula, while both express a hope that entomologists 
will become more aware of statistical methodology and more comfortable in 
using it. Their hopes have been fulfilled in many ways. For example, these 
articles were written before Taylor published his paper on the variance-mean 
power law (95) or Iwao described his mean crowding relationship (37); both 
of these have profoundly affected the practice of insect sampling. Sequential 
classification sampling was only just beginning to be noticed by entomolo­
gists, but now this method is used extensively (e.g. 22). General sampling 
theory has also been applied in particular instances [e.g. ratio methods to 
estimate mortality in the field (88)]. To facilitate interdisciplinary work, 
investigators have attempted to standardize technical terms (24). Kuno (47) 
summarized many of the advances made during the past thirty years. 
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IPM S AMPLING 429 

Two practical sampling concepts repeatedly encountered by entomologists 
are (a) randomization and (b) choice of sample unit and how it should be 
examined. For example, the theoretical necessity of proper randomization for 
estimating variances may be ignorable ["very little insect sampling is truly 
random" (52)], but using nonrandom methods should be justified in each 
instance (e.g. 19). Most sampling procedures used in a decision-making 
context assume random, independent samples. This assumption is not satis­
fied when samples are selected by traversing a path through a field and 
sequential stopping procedures are used. The ultimate effect of violating this 
assumption depends on the distribution of the organism being sampled. In 
practice, it may be more important that representative rather than random 
samples be taken (35). Representative samples can be obtained through 
systematic sampling; Sampford (77) provides a good discussion of this topic. 

The second important consideration is the sample unit and how it should be 
examined. The advantages of different sample units need to be studied (72, 
80,83,85,92) as well as the possible effects of the pests themselves on the 
sample units (51), or of observer bias or time of day on the value of sample 
data (8 1 ,  86, 108). Shelton & Trumble (84) provide a useful summary of 
practical considerations. 

MODELS FOR DESCRIBING SAMPLING EXPERIMENTS 

The adequacy of the information provided by a sampling scheme is defined by 
the precision (small variance) and accuracy (lack of bias) of sample estimates 
or classifications [using Cochran's (15) convention]. To characterize preci­
sion and accuracy, one must first describe a sampling experiment, and �hese 
descriptions are most conveniently done via mathematical models. Such 
models are needed for developing specific protocols (e.g. stopping boundaries 
for sequential estimation) and for evaluating the performance of a proposed 
plan (e.g. by simulation). The models we discuss here are: (a) models that 
relate sample variance to sample mean, (b) analysis of variance (ANOVA) 
models for estimating components of variance in multistage sampling, (c) 
probability models that define the distribution of individual animals in sample 
units, and (d) models that describe spatial patterns of counts. 

Variance-Mean Models 

The variance-mean relationships of Taylor (95) and lwao (37) have been used 
effectively as foundations for many sampling protocols. These relationships 
are extremely useful because they permit the prediction of variances for 
estimated means and this in tum allows development of sequential sampling 
procedures. Only recently has serious attention been given to the ecological 
meaning and arithmetic stability over time and space of these relationships 
(47, 97, 98, 101). Both variance-mean models describe the yariance-mean 
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430 BINNS & NYROP 

relationship well, although Taylor's power law (TPL) seems to be more 
common (96). However, the models' ability to predict what will happen in the 
future (i.e. their suitability as foundations for pest-management sampling) has 
been debated. The index, b, of TPL may not be consistent from site to site 
across a continent ( 101), or it may depend on pesticide use (100). The size of 
the sample unit usually has little effect on the exponent of the TPL (96), but 
on occasion it may (78). However, this relationship remains critically impor­
tant for the development of sampling procedures (39, 97). Iwao's relation­
ship, based on the empirical observation that the mean crowding index (48) 
often depends linearly on the mean, seems to have received less critical 
attention as far as consistency of its parameters, possibly because the TPL is 
more popular. 

Because both dependent and independent variables are subject to sample 
error, using simple regression to estimate a variance-mean relationship is not 
ideal. However, if the number of sample units counted for each mean is large 
and the mean values cover a wide range, simple regression is usually ade­
quate. Perry (65) discusses in detail the fitting of TPL. 

Analysis of Variance Models 

The variance of a density estimate obtained from multistage sampling (MSS) 
has more than one source of error. For example, Harcourt & Binns (32) 
described a multistage sampling experiment for the alfalfa blotch leafminer, 
Agromyza frontella, with stratification within alfalfa stems. For the simplest 
case of MSS, two-stage sampling, a random sample of c primary sample units 
(e.g. alfalfa stems) is taken, and from each of these, e subunits (e.g. leaves) 
are taken. The variance of the density estimate per subunit is V = s,2Jec + 
S22Jc, where the variance components s,2 and S22 are most conveniently 
estimated using standard analysis of variance (ANOVA) (e.g. 15). Once s,2 

and sl are known, V can be calculated for any sample size (e and c). This 
ANOV A properly relies on homogeneity of variances, which are known to 
vary with the mean value. Often one can transform the data to remove 
heterogeneity (e.g. 66), but other direct methods based on variance-mean 
relationships have recently been proposed. 

Kuno (45) used Iwao's relationship to obtain estimates of variance com­
ponents in terms of the mean values. He incorporated the results from within 
each ANOV A into the analysis to estimate the three parameters a, f3" and f32 
in the models: S,2 == (a + l )m + [f3,(f32 - l)Jf32]m2 and sl == [(f3, -
f32)Jf32]m2, where m represents the mean. Nyrop et al (59) used Taylor's 
relationship to estimate variance components, based on equating variance 
components with a TPL function. If a common b is justifiable for between and 
within mean squares in the ANOVA (which should be checked), a good deal 
of simplification is possible so that s,2 = a,mb and s/ = a2mb. In a similar 
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IPM S AMPLING 431 

procedure, the mean squares in the ANOV A are equated with TPLs yielding 
S\2 

= a\mb and sl = (a2 - a\)mb/e. 

Probability Models 

Probability models are important because they can form a basis for sample 
protocols and they can also be used to assess the performance of a sampling 
protocol. The primary difficulty in using probability models to describe 
sampling data is that the distribution of animals can change with density. 
Under these circumstances, a variance-mean relationship can be used; howev­
er, neither of the variance-mean relationships describes a distribution. This is 
demonstrated by the development of the Ades distribution (67), one of whose 
authors is Taylor. One of the (three) parameters of this distribution is effec­
tively the index of the Taylor power law, while the others can vary from 
population to population and represent the individual distributions. In a 
similar way, plausible biological reasons explain why the k of the negative 
binomial distribution (NBD) can be regarded as varying according to a 
variance-mean law, thus introducing an extra parameter (e.g. 7). These 
approaches have been compared (41, 68); however, there is no guarantee in 
practice that the form of a distribution remains consistent as the mean value 
increases. For example, the distributions of European com borer, Ostrinia 
nubilalis can be fitted to the Ades distribution for all mean values, but not to 
the NBD (67). 

Fitting the kinds of distribution encountered in field work is greatly sim­
plified by general computer programs like DISCRETE (27) and MLP (75). 
Programs to fit the Ades distribution are available from the original authors 
(68). 

Spatial Pattern of Counts 

Occasionally, plotting the distribution of animal counts over a sample uni­
verse is useful. The resulting graph can be important for detecting dis­
tributional patterns such as edge-effects that have to be considered when 
designing a strategy for collecting samples. The data for such a plot are 
usually obtained by sampling at a grid of points (not necessarily at regular 
distances). A smooth surface can be obtained by fitting a mathematical model 
to these data, but this approach is rarely satisfactory because of the difficulty 
in choosing an appropriate form for the model. However, nonparametric 
techniques like kriging (e.g. 31) can be used to interpolate between points. 
For these, the value at any point not on the grid is determined by interpolation 
using a weighted average of neighboring data values, the weights being 
derived from a curve relating average covariances between data values to 
distance between the points they represent. S chotzko & O'Keefe (82) recently 
used these methods in entomological studies. The methods' usefulness will 
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432 BINNS & NYROP 

reside mainly in the theoretical insights they may give; they require much 
sampling effort and assume that animals are not disturbed by such intensive 
sampling. Much mathematical theory has been developed recently on the 
estimation of spatial pattern ( 1 7, 3 1 ,  74). 

SAMPLING METHODS 

In this section, we shall assume that mean density (m) is of interest, although 
other parameters such as the ratio of two population means can be more 
important (e.g. 56). Four general methods of constructing sampling pro­
cedures for use in IPM decision making have been developed. The methods 
can be ordered in terms of the type of information they yield, whether or not 
they assume simple random sampling (SRS) or multistage sampling (MSS), 
the cost of obtaining the information, and the ease with which the procedures 
can be developed and implemented (Table 1). 

Sequential sampling has been proposed for each of these procedures. We 
shall eonfine ourselves to sequential methods because they are generally less 
costly than fixed-sample-size methods. In a sequential method, as data (Xi) are 
gathered from sample units, a summary statistic (e.g. the sum of the Xi) is 
updated in such a way that a sample path can be plotted of this statistic against 
the current sample size. Sampling continues until this path. crosses a pre­
determined stop line at which point sampling stops and the desired informa­
tion is immediately available. Determining how the sample path is to be 
generated, and how to calculate the stop line (or lines), are discussed below. 

The type of information available from each of these procedures ranges 
from: (a) a simple dichotomy in which the mean is estimated to be either 
above or below a predetermined critical value, mt. through (b) a trichotomy in 
which the mean is estimated to lie in one of three intervals (covering all 
possible values), (c) an enhanced trichotomy in which a point estimate with 

:Standard error (SE) is obtained if m is deemed to lie in the middle interval, to 
(d) a point estimate (with SE) for all situations. As might be expected, the 
more information obtained, the higher the (sampling) cost. For any given 
problem, the method chosen must be appropriate to the information required. 
For example, if a quick decision has to be made whether or not to spray a field 
with a pesticide, a simple dichotomy is all that is required. 

Two modifications can be made to most of the procedures. First, instead of 
fully sequential sampling, double sampling procedures can be used. Second, 
binomial or presence-absence counts can be substituted for complete 
enumeration. These modifications are discussed after reviewing the four 
methods. 

Each of the four methods can be based on either a variance-mean relation­
ship or a specific probability model. In all cases, however, probability models 
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IPM SAMPLING 433 

Table 1 Attributes of sampling plans used in IPM decision making 

Method 

Two level 
classification 

Three level 
classification 

Result 

mb 5 mtC or 
m > mt 

m 5: mit, 
mIt < m � m2" 
orm>m2t 

Variable intensity m 5 mit, 
m > m2t' or 
m ± df 

Estimation m :!: d 

'Complexity in implementation. 
b Estimated mean. 
c I � Threshold. 
d Simple random sample. 
e Multistage sample. 
f Specified value. 

Selection of 
sample units Sampling cost Complexity' 

SRSd Lowest Easy 

SRS Low Intermediate 

MSSe High Most difficult 

SRS Highest Easy 

must be used to analyze the performance of a particular plan. Some of the 
methods have been (or can be) modified to incorporate a temporal dimension. 
These modifications are discussed in a separate section. 

Two-Level Classification 

The general problem in sequential classification is to classify the unknown 
population density, m, into one of two specified sets; either above or below a 
critical value mt. A plan is assessed by two basic criteria: (a) how accurately 
does it perform the classification (i.e. for any value of m above or below mI. 
what is the probability that a correct classification is made), and (b) how 
quickly is the decision made (i.e. how many samples are required)? These are 
generally displayed as (a) an operating characteristic (OC) curve that shows 
the probability of the procedure deciding (whether correctly or not) that m � 
ml for any value of m, and (b) an average sample number (ASN) curve that 
shows the expected sample size required to reach a decision. Typically, an 
OC curve is near 1 when m is much less than mI. near 0.5 when m is near mI, 
and near 0 when m is much larger than mI' A typical ASN curve is high when 
m is near mp and decreases to moderate or small values when m is far or very 
far from mI' Before embarking in practice on a decision-making protocol 
based on sequential classification, these (or equivalent) properties should be 
studied to see if the protocol is too expensive (ASN) or not worth using 
because its discriminating power (OC) is poor. It is therefore unfortunate that 
papers proposing sequential classification methods have often tended to 
present only the mechanics (stop lines) of their procedures and not the 
performance criteria (OC and ASN). 
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434 BINNS & NYROP 

Two methods of sequentially classifying population densities have found 
extensive use in IPM. One is based on the distributional theory of Xi in the 
field [Wald's sequential probability ratio test, SPRT (103)] and the other on a 
variance-mean relationship (38). 

Initial development of the SPRT was in terms of simple hypothesis testing. 
The null hypothesis, Ho, that m = mo was to be tested against the alternative 
hypothesis, HI> that m = m, (mo < mt < m,), and no other values of m were 
to be considered. If the probabilities of wrongly rejecting Ho and H, were to 
be a and {3, respectively, Wald (103) showed how to calculate stop lines, and 
generalizing the analysis to allow for any value of m, gave approximate 
formulae for the OC and ASN curves. Specific sampling plans for IPM have 
been reviewed by Fowler & Lynch (22). 

To develop a sequential sampling plan based on the SPRT, the distribution 
of sample observations must be described by a probability model with one 
unknown parameter. Models frequently used in IPM are the Poisson and the 
negative binomial (NBD). The Poisson has a single unknown parameter, the 
mean m, but the NBD has two parameters, m and the dispersion parameter k. 
To use the NBD, one generally assumes that k is known and constant. These 
requirements, and similar ones for other distributions, impose some restric­
tions on the applicability of the SPRT (see below), but even when they are not 
strictly met, they do not necessarily prevent use of the SPRT. If an appropri­
ate model can be found to describe the distribution of sample counts, the 
SPRT has two advantages over the second sequential classification method. 
First, the OC and ASN functions are rapidly approximated by easily com­
puted formulae (23). Second, the SPRT has the property that among all 
sequential tests with OC values for mo and m, equal to 1 - a and (3, 
respectively, it minimizes the ASN values for these means (104). In general, 
SPRT plans require on average only 4�0% as many observations as equally 
reliable fixed-sample-size methods, and sample-size reductions as high as 
86% have been reported (91). 

Before implementing a sequential classification sampling plan based on 
. Wald's SPRT, the four parameters noted above must be specified: mo, m), a, 

and {3. The best way to view these is as parameters that can be manipulated in 
order to define an acceptable SPRT, as defined by its OC and ASN curves. 

One of the frequently noted limitations of the SPRT is the requirement that 
the only parameter allowed to change from one sample location or time to 
another is the mean density. For the NBD, this means that the dispersion 
parameter k must remain constant. However, as is well known, the dispersion 
of animal populations frequently changes as a function of density. Changes in 
the dispersion of sample observations may or may not significantly affect the 
OC and ASN of a SPRT, and these effects should be determined (possibly by 
simulation) before discounting the use of the SPRT in a sequential sampling 
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IPM SAMPLING 435 

program. Under some situations, the OC and ASN functions for a SPRT 
based on the NBD are not very sensitive to even rather large changes in k 
(l05) . 

The second sequential method used to classify population densities is based 
on a confidence interval about the threshold density. This procedure was first 
proposed by Iwao (38) and has the desirable attribute that it can be developed 
without having to consider any nuisance parameter (e.g. k of the NBD). The 
only requirement for determining the stop limits is that the variance can be 
modeled as a function of the mean (e.g. TPL) and thereby predicted for the 
threshold density. With this procedure, null and alternative hypotheses are 
constructed as: Ho, m :::; mt; and H" m > mt• Stop limits are constructed by 
computing a standard confidence interval about mt in terms of the total 
number of organisms found in n observations. 

However, a no longer has the same meaning as for a fixed-sample-size 
confidence interval, and error rates can differ considerably from the nominal 
values (61). There is a mathematical theory for approximating the OC and 
ASN associated with a sequential sampling plan based on Iwao's approach 
(87), but computer simulation is often easier to use (57). Thus, while no 
probability model for the sample observations is required to construct the stop 
lines, a probability model is required to determine the OC and ASN. If the 
NBD is used, the value of k can be estimated from TPL as k = m2/(amb -- m) . 
Variability in the variance-mean relationship (see e.g. 101) should be in­
cluded in the calculations. 

Three-Level Classification 

Sampling plans that classify population density into three levels (tripartite 

plans) provide the next higher level of information. Such sampling plans are 
constructed by simultaneously considering two simple two-level classification 
schemes that can be developed using either the SPRT or Iwao's stop limits. 
Fowler (21) describes this process using the SPRT. For example, if two 
critical densities, mtl and ml2 (mtl < md, are to be classified, joint considera­
tion of two sets of hypotheses allows classification according to: m :::; 11It1, mtl 
< m � mt2, and m > mt2' In situations in which the most satisfactory action 
for mtJ < m :::; ml2 is to take a second look after a few days, the flexibility of 
such a tripartite plan is attractive. 

Simulation must be used to construct OC and ASN functions for tripartite 
classification schemes. These functions are somewhat different from those for 
a simple two-level plan in that there are two OC curves, one corresponding to 
the conclusion that m :::; mtl and the other to the conclusion that mtl < m :::; 
mt2. The first OC curve has a standard shape, but the second is bell shaped 
with a peak approximately mid-way between mtl and mt2. The ASN function 
is bimodal with peaks located approximately at mtl and m12' 
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Variable-Intensity Sampling 

Variable intensity sampling (VIS) (33, 34) offers the next level of information 
by providing either a classification of density or an estimate of density if the 
density is within a fixed distance from a threshold value. The objectives 
behind VIS are twofold. First, samples are taken from throughout the sample 
universe to ensure a representative sample. This procedure is especially 
important in situations where heterogeneity in pest density is suspected. The 
second objective is to sample more intensively when the mean is close to the 
economic threshold and less intensively when it is far from this value. The 
second objective is similar to that of other sequential classification methods: 
to be as economical as possible. Because VIS is designed to meet both 
objectives, it is very appealing and, when possible, should be more widely 
used. The biggest drawback to VIS is that it is more difficult to implement 
than other sampling procedures because the decision to continue sampling is 
not simply yes or no; instead, the number of samples to be taken at a particular 
sampling location in a field is a function of the cumulative number of samples 
and the current estimate of mean density. Tables can sometimes be produced 
that allow relatively easy determination of updated sampling intensity (34, 
59), but often a programmable calculator or computer is required. 

The method works in the following way. First, the number of sites to be 
sampled (c) and the maximum number of elements to be sampled at each site 
(emax) are determined. The maximum total sample size n = cemax can be 

'determined by estimating maximum available sampling time or by specifying 
bounds on the range of densities for which the maximum sample size will be 
used. At the first site, emax elements are sampled. Based on the outcome of 
this sampling, the number of elements e to be sampled at the next and all 
subsequent sites is determined. If the estimated mean density is considerably 
less than or greater than the threshold, e is reduced from emax• Samples are 
taken at the next site using the appropriate sampling intensity and the overall 
mean is recomputed. Based on this estimate, the number of elements to be 
sampled may be revised again. This procedure continues until all sites have 
been visited. 

Revision of the number of samples to take at each site proceeds as a 
two-step process. First, the estimated mean density is compared with a 
nominal confidence interval that brackets the threshold (mt). If the density 
estimate falls within this interval, the maximum number of samples is taken. 
If the density estimate lies outside this interval, the element sample size is 
adjusted so that the overall sample size will estimate the mean, with either an 
upper or lower I - a confidence limit equal to the threshold mt. 

VIS protocols can be developed using all of the probability models pre­
viously described (e.g. TPL, nested variance, NBD) but they are most 
appropriate when a nested variance structure exists. One can assess the 
performance of VIS procedures using simulation (33, 34, 59). 
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Estimation procedures provide the most information about the population 
being sampled. They are relatively easy to implement, but they may incur 
greater sampling costs than classification procedures. The fundamental ques­
tions to be addressed in designing a sampling procedure whose purpose is to 
provide an estimate of population density is how many observations are 
required and how can they best be allocated to achieve a desired d�gree of 
precision. Two common ways are used to express the precision of a density 
estimate. First, the standard error of an estimated mean may need to be within 
a certain value of the mean. This value may be a specific numerical value or a 
proportion of the mean equivalent to specifying a certain coefficient of 
variation of the mean, CV. Second, the estimated mean may need to lie within 
a certain interval around the true mean density with a specified confidence 
probability. These methods use essentially the same formulae and provide a 
way of computing the required sample size, n, as a function of the mean and 
variance (40). 

The variance is usually not known, but using a relationship such as TPL in 
these formulae yields n in terms of m, the mean density being sampled. This 
term still cannot be used for a fixed-sample-size plan, but the relationship 
between n and m can be rewritten to define sequential stop lines as the basis 
for sequential estimation procedures (30, 43). As samples are processed, the 
cumulative number of animals found is compared with the stop line. When the 
total exceeds the stop limit, sampling is terminated with the expectation that 
the specified precision has been reached. 

Sequential estimation procedures that make use of variance-mean rela­
tionships do not depend on any particular distribution for computing stop 
lines. Procedures have also been developed for specific distributions; they are 
usually based on Bayes theory and the minimization of losses defined in terms 
of sampling costs and desired precision (l09), but some use stopping 
boundaries that are specific to a given distribution (44). Kuno (43) proposed a 
method for estimating the mean of a NBD with a known value of k. He 
derived a stopping boundary by specifying that the precision of the estimate of 
m must have a predetermined CV. Binns (6) and Rudd (76) derived a similar 
boundary, and Binns (6) showed that the distribution of the estimated mean 
was independent of n. This finding is important because it guarantees that the 
cv and confidence interval will not vary unaccountably as can happen with 
other boundaries. 

If a sequential estimation procedure is done many times, the estimates on 
each occasion generate a distribution. This distribution has a mean and cv of 
its own that should be distinguished from the mean and cv based on the data of 
a single sample. The precision of a sequential procedure. can be defined in 
terms of either of these cv values: the cv based on the distribution of the 
estimates (CYD) can be used to predict the precision on any future occasion; 
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the cv based on the sample data (CVS) defines how precisely the mean was 
estimated on that occasion. The values of these cv values may not be the 
same. 

Sequential estimation procedures that are based on specifying a cv and that 
use an empirical variance-mean relationship such as TPL will not yield 
estimates whose CVSs are equal to the specified cv each time they are used 
(36, 101), because first, while TPL may fit the data well, variability and 
hence uncertainty remains in the variance-mean relationship. Second, the stop 
lines are based on expected values of random observations and the required 
average precision will be attained only in the long run: the decision to stop 
sampling will often be made well before or after the expected number of 
samples is collected. Another often-overlooked point is that the estimated 
mean is biased, although the magnitude of this bias is usually modest (5, 44). 

The performance patterns of sequential estimation procedures based on 
requiring the estimated mean to lie within a certain interval around the true 
mean have also been studied (44). For both normal and nonnormal distribu­
tions, the obtained probabilities can be significantly below the specified ones. 
This decrease is greater when the width of the confidence interval, I, divided 
by the standard deviation, s, (lis) declines. 

For example, a simulation experiment that aimed at 25% cv was done using 
Green's (30) method for m = 2,5,8 and two TPL formulae (s2 = 4ml.l and S2 
= 4mI.9). This figure was compared with the equivalent stop lines for Binns' 
NBD method, for the Poisson distribution [a horizontal line (107)], and for a 
straight-forward fixed sample size. Figure I shows the stop lines for m = 5. 
The reason for choosing these boundaries is to exemplify the effect on the 
estimates as the boundary slope at the expected crossing point goes from 
vertical (fixed sample size) through Green's or Binns' slopes to horizontal 
(Poisson). The results (Table 2) for the zero slope are not good because the 
distributions are not Poisson (k = 0. 61, 1.35,2.04 for m = 2,5,8 and b = 

1.1; k = 0.31,0.31,0.32 for m = 2, 5, 8 and b = 1.9). When the slope at the 
expected crossing point is low for any method, the estimates are biased. CVD 
and average CVS are similar, but CVD tends to be larger when the slope is 
smaller. Average CVS is always less (but only slightly) than the prescribed 
value. These results exemplify some characteristics of sequential estimation 
methods; more work remains to be done before all general properties are 
known. 

Of these four methods, only Green's requires no more than knowledge of 
TPL (or equivalent). Methods based on the NBD perform as expected only if 
the value of k is known. Using an underestimate of k results in better precision 
than expected (and the taking of more samples), while using an overestimate 
results in lower precision (6). If k is not known, one can follow a two-stage 
procedure in which one first estimates k using the method of moments as k = 
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Figure 1 Stop lines for three sequential estimation sampling programs. 

m2j(s2 - m) after a certain number of samples have been processed and then 
continues sampling using this estimated value of k. This procedure works 
quite well (57). 

Double Sampling 

Double sampling is occasionally more convenient and useful than full sequen­
tial sampling. The basic principle is to take an initial sample and use the 
information so obtained to decide on the size of a second sample or whether to 
take a second sample at all. Two reasons are generally given for using double 
sampling: (a) to try to gain some of the advantages. of sequential sampling for 
classification without checking a table or chart after every sample unit (e. g. 
62), or (b) to obtain an estimate of, say, mean density with some pre­
determined precision when the precision depends on some other quantity (e.g. 
variance) that is unknown (e.g. 90). A third reason is to ensure a better 
representation of the population than may be possible under sequential sam­
pling, by a proper disposition of the initial sample. 

Because of mathematical difficulties, the assumption of a normal distribu­
tion is usually necessary, which implies that at least moderate sample sizes 
must be used. This requirement could reduce the effectiveness of the method. 
For example, Nyrop & Wright (62) used 25 as a minimum sample size with an 
additional 25 samples taken if required. However, if normality is assumed for 
smaller sizes, a plan with first and second sample sizes equal to 15 and 35 
rather than 25 and 25 produces approximately the same oe, but on average 
requires 10-20% fewer samples because of the greater chance of stopping 
after the initial sample. This result should be compared with that found by 
Cox (16), who showed that for estimation, the first sample should be as large 

A
nn

u.
 R

ev
. E

nt
om

ol
. 1

99
2.

37
:4

27
-4

53
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

N
IV

E
R

SI
T

Y
 O

F 
FL

O
R

ID
A

 -
 S

m
at

he
rs

 L
ib

ra
ry

 o
n 

10
/3

0/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.



Table 2 Comparison of sequential procedures for estimating the meana 

Green 
bb me Ma s· CVD1 

1.1 2 2. 10 -.2 27 

1.1 5 5.25 -.5 25 

1.1 8 8.52 -.9 26 

1.9 2 2.01 - 19 24 

1.9 5 5.00 -45 24 

1.9 8 7.93 -79 24 

a Based on 1000 simulations each, 
bExponent for TPL;? = amb, a = 4.0. 
eTrue mean. 
d Average estimate of the mean. 

cvsg 

24 

23 

23 

24 

24 

24 

e Slope of the boundary at the expected crossing point. 
f cv of the distribution. 
• Average of the !ample cv. 

Stop lines based on 
NBD 

M s CVD CVS 

2.02 -6 24 24 

5.04 -14 24 23 

8.17 -51 24 23 

2.01 -14 24 24 

4.99 -81 24 24 

7.90 -390 23 24 

Fixed sample size 
M CVD CVS 

2.00 24 24 

4.98 24 23 

8.09 24 24 

2.00 25 24 

4.97 24 24 

7.87 24 24 

Poisson 

M CVD 

2.12 27 

5.35 26 

8.57 28 

2.12 27 

5.28 28 

8.40 29 

CVS 

24 

23 

24 

24 

24 

24 
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as possible provided it is not larger than the sample size that would be 
recommended if the precision were known beforehand. 

For classification, cost and complexity are similar for double and sequential 
sampling. For estimation, however, double sampling replaces the pre­
determined stopping boundary with a procedure that requires a programmable 
calculator or computer to obtain the required sample size (e. g. 12). Thus, 
double sampling for estimation is more complex. 

Binomial Sampling 

Sampling can sometimes be made easier and less time-consuming by sub­
stituting binomial counts for complete counts. Binomial sampling is founded 
on defining a relationship between the density of organisms (m) per sample 
unit and the proportion of sample units with more than T organisms (1 - PT), 
where T = 0,1,2, .. . . Here, T is referred to as a tally threshold although it has 
also been referred to as a "cutoff number" (9). Historically, T = 0 has been 
used most often, but there may be compelling reasons to use some other tally 
threshold. Apparently, Anscombe (3), Kono & Sugino (42), and Pielou (69) 
were first to apply binomial sampling to ecological work, although research­
ers had long known that the proportion of sample units containing no in­
dividuals could be used for estimation purposes (e.g. 99). 

Binomial sampling is appealing because it is usually faster and therefore 
less costly on a per-sample unit basis (110). In addition, binomial sampling is 
the most feasible field sampling method for many organisms. The trade-off 
with binomial sampling is increased uncertainty with respect to estimated 
densities or classification decisions. 

All binomial sampling plans are based on a model that expresses the 
relationship between the mean density and the proportion of sample units with 
more than T organisms. Two approaches have been used: one is based on the 
empirical observation that loge - IOgPT) and logm are linearly related over 
wide ranges of m (28, 42), while the other is based on a theoretical distribu­
tion of the animals (3, 69). For both decision making and estimation, the 
goodness of fit of these models to base data is critical in terms of bias and 
precision (8, 57). To save space, we discuss decision making based only on a 
theoretical distribution (NBD) and estimation only in terms of the empirical 
model. These indicate the general procedures and their problems for other 
contexts. 

BINOMIAL SAMPLING AND DECISION MAKING The most critical aspect of 
binomial sampling in pest management is knowledge of the formula relating 
the binomial proportion (PT) obtained from field sampling to the mean density 
(m). To describe the spatial distribution of animals in the field adequately, a 
theoretical distribution usually requires at least one parameter other than the 
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mean. Thus, a relationship based on a theoretical distribution must account 
for the extra parameter, for example, the aggregation parameter k of the NB D. 
The consequences of being uncertain 'of. the value of k are described for 
decision-making by Binns & Bostanian (9, 11): an inappropriate choice of T 
could result in misleading recommendations. 

Wilson & Room (113) used TPL to estimate k by the method of moments, 
letting k be a function of m, so that Po could also be written as a function of m. 
However, some problems still remain: estimating k by the method of moments 
is not very efficient for moderate to large values of m (4, 18, 89); the values of 
k do not always lie close to their expected values based on TPL (e.g. 54); and 
the standard errors of a and b in the TPL and the biological variation about 
TPL may be large and adversely affect the estimation of k. Thus, the solutions 
suggested by Binns & Bostanian (11) remain relevant if accurate and precise 
decision making is desired. They showed that by changing T to reflect 
knowledge of the critical threshold (m,), one can adjust binomial sampling so 
that the probabilities of making a wrong decision are considerably reduced, 
while retaining most of the benefits of presence-absence sampling. OC and 
ASN curves can be calculated for sequential binomial sampling, allowing for 
the effect of variation around the TPL on the estimate of k (1. P. Nyrop & M. 
R. Binns, in preparation). Weighted averages of the basic formulae for a 
binomial SPRT are calculated (by numerical interpolation) with weights 
proportional to an assumed normal distribution around the TPL. Based on 
these curves, the properties of decision-making based on Wilson & Room's 
(113) fOffimla can be improved by adjusting the tally threshold according to 
m,. This improvement is exemplified in Table 3, which is based on mite-count 

Table 3 Operating characteristic (OC) and average sample number (ASN) values for 
binomial sequential sampling plans· 

Tb = 0 T = 7 

a, {3 = 0.2 a {3 - 0.01 a {3 = 0.2 a {3 = 0.01 

OC me ASN m ASN m ASN m ASN 

0.9 2.2 13 2.5 77 2.8 7 4.3 60 

0.8 2.8 16 3.0 99 3.6 7 4.6 70 
0.7 3.3 18 3.5 112 4.2 8 4.8 7S 

0.6 3.8 20 3.9 119 4.7 8 5.0 80 

0.5 4.4 20 4.4 122 5.2 7 5.2 78 

0.4 5.1 20 5.0 120 5.7 7 5.4 76 

0.3 5.9 20 5.7 113 6.4 7 5.6 75 

0.2 7.1 19 6.7 100 7.2 6 5.8 65 

0.1 9.3 16 8.5 80 8.7 5 6.2 53 

"TPL: S2 = 3.33m1.39, SPRT parameters: mo = 3.5, m, = 7.5, a, {3 as indicated. 
bTally threshold. 
CTrue mean. 
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data from Quebec apple orchards. Changing the tally threshold can result in a 
considerably lower ASN; for T = 0, decreasing ex or {3 beyond a certain point 
does not materially improve the OC but merely increases the ASN. These 
findings are consequences of the basic theory of the SPRT and of recent work 
in binomial sampling (8, 57). 

BINOMIAL SAMPLING AND ESTIMATION When a binomial scheme is based 
on an empirical relationship, different problems arise. One of the most 
important results from the fact that the relationship is empirical, namely that 
there must be some unknown (biological) variance about the relationship that 
has nothing to do with sampling error. Even if very large individual samples 
are obtained over a wide range of mean densities, the points representing them 
will not lie exactly on the line depicting the relationship. Thus, the necessary 
elements of the variance of a m predicted by the model are (a) the binomial 
sampling variance of the estimate of PT. (b) the variances of the estimated 
parameters of the fitted model, and (c) the biological variance about the 
modeL Several formulae have been suggested for estimating the variance of 
m; these do not always include every element (28,46,55). Binns & Bostanian 
(10) simplified the problem by equating the mean square error from regression 
(they used simple linear regression to fit the model) with the biological 
variance, thus including sample error from the original base data set. Schaalje 
et al (79) pointed out that this simplification could be misleading and demon­
strated that one can use TPL to help estimate the biological variance sepa­
rately from the sample error [the idea is analogous to that used by Wilson & 
Room (113) for estimating k using TPL]. They (79) described a method based 
on large-sample-size (statistical) theory for the calculations. Ordinary regres­
sion theory is technically inappropriate because the independent variable, 
10g(-logPT), contains sample error (G. B. Schallje, personal communica­
tion). However, the practical effect will not be important provided that the 
range of the independent variable is much wider than its sample error could 
possibly be, as seems to be the case in all published accounts. Because one 
need not therefore reject the regression method for estimating the line, one 
can use a relatively simple method for estimating the biological variance, 
incorporating the ideas of Schaalje et al (79). The sample error for a mean 
value mi based on TPL and sample size ni is am/In;, so the total variance 
(including biological variance, if) of logmi is approximately (am/-2)lni + 
if. Thus, a weighted regression analysis can be done in which an iterative 
algorithm can be used to find the maximum-likelihood estimate of if. The 
calculations are relatively simple if MLP (maximum likelihood program) (75) 
is used. For example, the mean square error found in the unweighted regres­
sion for Tetranychus urticae on strawberries by Binns & Bostanian (10) was 
0.4489. Using weighted regression as above (n; = 35), the biological variance 
is estimated to be 0.2056. Although reduced by more than 50%, this value is 
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still the major component in the error of the estimate of logm. More work is 
being done on this problem (G. B. Schaalje, personal communication). 

Binomial sampling is attractive and widely used because of its potential 
economic savings and simplicity of operation. The main hurdles lie in the 
development of practical plans. Here, the difficulties are mostly in preparing 
formulae for the variance and bias of estimates, incorporating components of 
error in the DC and ASN, and choosing the optimum procedure based on 
these. 

ASPECTS OF SAMPLING FOR DECISION MAKING 
REQUIRING FURTHER STUDY 

Two aspects of sampling for decision making have received relatively little 
theoretical attention, yet are potentially very useful and warrant further study. 
The first aspect is motivated by the temporal dynamics of populations. 
Because pest management is often a continuous process, temporal changes in 
animal abundance should be explicitly considered in sampling programs. 
When a temporal dimension is incorporated into the sampling problem, 
problematic and acceptable population densities (i.e. those above or below an 
economic threshold) are no longer single points but form trajectories in time. 
The shapes of these trajectories are influenced by patterns of density change 
and by variation in economic thresholds, if any. Overall population abun­
dance can grow or decline through reproduction, death, immigration, or 
emigration. Furthermore, densities of a particular life stage may change 
independently of overall population density through phenological maturation 
of the population (25). The second aspect is motivated by the fact that a 
community of species is often present along with the specific pest being 
controlled. Thus, one may need to consider two or more pests simultaneously 
or determine the abundance of a pest and its natural enemies together. 

Sampling over Time 

One can sample population processes through time for the purpose of decision 
making in two ways: independent estimates or classifications can be made at 
different points in time, or successive samples in time can be used jointly to 
characterize the popUlation process. The expected pattern of the population 
trajectory, the ability to define acceptable and problematic population 
trajectories, and practical objectives should dictate which approach is used. 

A time dimension can be included in a sampling program when in­
dependent estimates or classifications are made at each sampling time by 
using the most recent sample result, by adjusting the time interval between 
samples, and by using knowledge of the dynamics of the sampled population. 
Wilson (111) and Wilson et al (112) used sample estimates and nonlinear 
regression models to determine when the next sample should be taken. We (1) 
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have developed tripartite sampling plans for European red mite, Panonyehus 
ulmi, in apple orchards that classify the popUlation into one of three catego­
ries: (a) treatment required, (b) treatment not needed and sampling required in 
7-10 days, and (e) treatment not needed and sampling required in 11-15 days. 
Criteria used to classify the population into the last category were determined 
by assuming exponential growth and finding the density that would result in 
densities close to the action threshold after the resample interval. 

Cumulative use of successive samples in time to classify a population 
trajectory began to be formalized as "time sequential sampling" by Pedigo & 
van Shaik (64), who allowed the mo and ml of a SPRT to be functions of time 
(r) following models of critical pest abundance so that moe r) and ml (r) 
correspond to acceptable and problematic popUlation trajectories. With this 
procedure, stop limits are constructed for each successive sample point in 
time based on moe T), mt(T), and the SPRT probabilities a and (3. Formulae for 
the stop limits are similar to those for a SPRT done once in time except that 
counts taken through time are weighted to reflect changes in the differences 
between the means for the null and alternate population trajectories. 

The properties of such schemes cannot in general be derived from standard 
SPRT formulae. For example, suppose the population trajectories can be 
defined by exponential growth curves, m( T) = exp(rT), and in particular, 
mo(T) = exp(0.04T) and m l(T) = exp(O.07T), where T is measured in days. 
Assuming that a reasonable sample size is used each time, a normal distribu­
tion provides an adequate approximation with variance based on TPL. If an 
average variance (V) is used at each time, stop lines similar to those of Pedigo 
& van Shaik (64) can be determined. The general form of the stop lines is we 
= ho + beT) and we = hi + beT) . The intercepts ho and hi are 10g[/3/( l - a)] 
and log[( l - /3)/a] respectively. The term beT) is the sum up to time T of 
[ml(r' ? - mo(r' )2]/2V. The summed weighted counts (we) , with weights 
equal to [ml( r' ) - moe r' )]/V, are compared with the stop lines. Table 4 shows 
OC and ASN values determined via simulation for r ranging from 0.0 1  to 
0. 10, five day intervals, and S2 = 4m1 .9. The procedure using V is close to 
that using a full model in which different variances for moe T) and m I (T) were 
used, but the full model is computationally much more difficult. Note that the 
achieved a and /3 (0.05, 0. 12) are much less than the nominal values of 0.2 
and 0.2. 

Another way to integrate successive samples in time is to use a standard 
model and, beginning at the start of the season, to update the model based on 
information gleaned from successive samples in a Bayesian type of analysis 
(70). We have attempted to use this approach when sampling simulated 
populations with known distributions and have found it difficult to operate. 
Part of the reason for this difficulty seems to be that estimates obtained at the 
beginning of the season retain undue influence as the season progresses. Some 
sort of inverse weighting may help solve this problem, as in industrial quality 
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Table 4 Sample OC and ASN values for time sequential 
sampling to compare exponential growth, expert) , based on a 
normal approximation' 

Full modelb Average variancec 
r OC ASN OC ASN 

0.01 1.00 4.1 1.00 3.9 

0.02 1 .00 4.2 1.00 4.2 

0.03 0.98 4.4 1.00 4.4 

0.04 0.95 5 .0 0.97 5.1 

0.05 0.68 5.1 0.79 5.6 

0.06 0.38 4.7 0.33 5 .6 

0.07 0.12 4.4 0.16 4.7 

0.08 0.06 3.5 0.10 4.2 

0.09 0.02 3 . 5  0.Q1 3.9 

0.10 0.01 3 .4 0.03 3 .6 

a SPRT probabilities equal to 0.2 at r = 0.04 and r = 0.07; 100 
simulations each. 

b Nonnal distribution, TPL s2 = 4m1.9, sample size 20. 
e As footnote b, but using an average variance for the weight and 

intercept. 

control (e.g. 50). The same objection may apply to time-sequential 'sampling, 
so a similar adjustment may be necessary there. 

Linear control systems appear at first to be an attractive alternative 
approach to updating sample information (e.g.  1 14). However, the number of 
parameters in such a system is large and the variance matrices must be 
estimated (the effect of which is hard to gauge). More importantly, however, 
linear systerms may not be able to mimic nonlinear systems well over a 
protracted period of time, especially if there are long intervals between 
sample dates. 

In general, procedures that make joint use of counts from successive points 
in time are only useful when the population trajectory being sampled is 
reasonably smooth and generally follows the patterns described by the null 
and alternate hypotheses. This is because these procedures make use of 
previous and current data to estimate or classify the population. If previous 
counts are not well related to the current situation, they are of little use. When 
the above-mentioned conditions do not apply, independent classifications or 
estimates should be made each time. 

Simultaneous Sampling of Two or More Species 

The need for sampling two or more species can arise in at least 
'two ways: a 

crop may be attacked by two or more pests that, for control or sampling 
considerations, must be sampled simultaneously, or the abundances of a pest 
and its natural enemies may need to be estimated together. 

The researcher can deal with the first
' situation in three ways. (a) A 
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sampling distribution model could be constructed for the pest group as a 
whole and sample estimates of the group (e.g. lepidopterous larvae) obtained 
instead of estimates for each species (34). Similarities in the sampling dis­
tribution of the target populations determine the feasibility of this approach. If 
these distributions are widely different, a composite model will likely not be 
acceptable. However, even when the distributions are different, the effect of 
these differences on the performance of a group-sampling plan should be 
determined through simulation. (b) A plan could be developed for the animal 
with the most variable sampling distribution, and this plan applied to all the 
species. (c) Provided that the species being sampled can be identified, dynam­
ic sampling procedures that make use of estimated species composition and 
sampling distribution models for each species could be coded on a hand-held 
computer. We know of no actual surveys that have used this technique. 

For sampling a pest and its natural enemies, although these solutions could 
be used to estimate densities, another potential indicator is the ratio of pests to 
natural enemies (56). Classifying or estimating a ratio is more difficult than 
classifying or estimating a mean because the sampling distribution of a ratio is 
complex. With small samples, the distribution tends to be skewed and the 
estimate can be biased. When the mean densities are moderate or high, 
sample sizes are large (n > 30), and the coefficients of variation for both 
numerator and denominator are small « 0. 1 ) ,  the estimate should be approx­
imately normal with negligible bias. Buonaccorsi & Liebhold ( 13) provide 
formulae for variance estimates, confidence intervals, and bias estimates of 
ratio estimators when the numerator and denominator are independent. 
Cochran (15) discusses when the numerator and denominator are correlated. 
More recent studies have examined sampling distributions of the ratios of 
binomial parameters (26). Although the asymptotic sampling theory of ratios 
is reasonably well developed, little use has been found for ratios in sampling 
for decision making. 

Time-sequential sampling also provides a framework for sampling popula­
tion processes that are influenced by natural enemies. Estimating or classify­
ing the abundance of natural enemies may not be necessary if their effect on 
pest dynamics can be ascertained. Sampling a population trajectory through 
time can provide this information and the methods described above might be 
used. However, we know of no instance in which this type of work has been 
done. 

INFLUENCE OF SAMPLE UNCERTAINTY ON DECISION 
RULE PERFORMANCE 

Information provided through sampling has an element of uncertainty, and 
sampling incurs costs. As a result, it is critical to ask whether a decision rule 
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based on sampling actually results in better IPM decision making. There are a 
number of ways by which to judge whether better IPM decision making is 
being accomplished. However, reduced pest-control costs, reduced losses 
from pests, and reduced use of chemical pesticides are commonly agreed 
upon indicators. 

Empirical historical experience, experiments, and mathematical models 
can all be used to study decision rule performance. The empirical approach 
has been used almost exclusively in the past, but although there can be much 
wisdom in it, gains to IPM are unlikely to arise if this method is used alone. 
With the experimental approach, properly designed experiments must be done 
to obtain comparative data on pest control costs and effectiveness with and 
without a decision rule. While this approach is conceptually straight forward, 
it may be impractical: paired (similar) sites must be used; there must be 
adequate replication; and data must be collected over a wide range of pest 
densities. Therefore, modeling is the only practical approach. Furthermore, 
the relative effects of different decision rule components (i.e. sampling 
plan, economic threshold) on rule performance can only be studied via 
modeling. 

Various models of IPM decision making have been proposed (53), but 
decision theory models (73) seem to be most appropriate for studying the 
effect of sampling uncertainty on decision rule performance. Decision theory 
models can be used to select the best management strategy when the informa­
tion on the state of a system is uncertain and to determine the value of 
sampling experiments in improving information content. When used in the 
latter capacity, the measure of interest is the expected net gain from sampling. 
Expected net gain is the difference between the value of sample information 
and cost of collecting data. The value of sample information is equal to the 
expected savings as a result of basing treatment decisions on sample data. 

Although it is desirable for the expected net monetary gain from sampling 
to be positive, this is not always necessary (60). It may suffice for net gain to 
be zero or not too far below zero, provided appreciable reductions in pesticide 
use or some other benefits result. We outline below how to calculate expected 
net gain from sampling using decision theory analysis. Mathematical de­
scriptions and use of the analysis to identify optimal strategies are described 
elsewhere (2, 53, 57, 58, 73). 

The first step in the analysis is to determine the best control strategy to use 
when no sample information is available. We use average or expected values 
as judgement criteria, although minimization of a worst-case scenario, or 
minimization of variance, can also be used (53 , 94). The net crop loss is 
calculated for given pest density and management strategy, and a weighted 
average over all pest densities (the expected loss) is obtained, with weights 
proportional to the assumed long-term probability distribution of pest density. 
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The management strategy with the smallest expected loss is the best strategy 
in the absence of sampling. 

The second step is to determine the expected loss when management 
actions are dictated by sampling. The general principles are exemplified by 
the simple situation where only one decision is made: namely, to intervene or 
not to intervene. The net crop loss is calculated for given pest density and both 
decision actions, as above. Then the net crop loss with sampling for given 
pest density is calculated as the weighted average of those for the two 
different actions, weighted by the probabilities of the actions (the probability 
of recommending no intervention is given by the OC curve). The overall 
expected loss is obtained, as before, as the weighted average over all pest 
densities; this is the expected loss dictated by sampling. The value of the 
sample information is the difference between the expected loss dictated by 
sampling and losses incurred when the optimal strategy with no sampling is 
used. Net gain from sampling is the difference between the value of the 
sample information and the cost of collecting the data. If sampling costs vary 
according to pest density (e.g. with sequential sampling), these costs are also 
weighted by the long-term probability distribution of pest density. 

Decision theory models have been used to study several situations in which 
sample data are used in decision making (e.g. 14 , 20,29,60, 102). However, 
given the large number of sampling procedures developed and decision rules 
constructed for use in IPM programs, the number of reported analyses is very 
small. This is unfortunate because important insights, including the need for 
further research, can be gained from conducting the analysis. Decision theory 
analysis requires models for a number of complex processes. While these 
models may not be well defined, the ability to make the computations on a 
microcomputer allows study of the effect of various assumptions that in tum 
will promote rational development of decision rules. Perhaps most im­
portantly, development of theoretical models for analyzing decision rules 
forces practitioners to adopt a teleological perspective when developing sam­
pling plans for use in pest management. 
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