
Possible Impacts of the Whitefly Q Biotype on Viral Diseases in Tomato

Jane E. Polston Dept. Plant Pathology Univ. Of Florida

The Whitefly, *Bemisia tabaci*, is a complex of 12 clades (soon to be 12 separate species)

L.M. Boykin et al. | Molecular Phylogenetics and Evolution 44 (2007) 1306-1319

Detection of Biotype Q: 2011 – 2016

Year	Q Whiteflies/Total Whiteflies Tested	Type of Host Plant	Location of Collected Whiteflies
2011	8/68	Ornamentals	Georgia, Florida
2012	7/96	Ornamentals	New Hampshire, Quebec, Canada
2013	4/45	Ornamentals	Florida , Oregon, San Paulo Brazil
2014	42/79	Ornamentals	Oregon, New York, New Jersey, Florida , BC Canada, Quebec Canada
2015	5/62	Ornamentals	Oregon, Vermont
2016	51/219	Ornamentals Eggplant Weeds	Ontario Canada, Florida (45), California

Modified from: C. McKenzie, USDA-ARS

45 Q Whiteflies in 11 Counties:

- 16 from Retail Nurseries (10 counties)
- 8 from wholesale nurseries (4 counties)
- 10 from residences (Palm Beach Co.)

Host Plants Involved:

- Ornamentals (hibiscus, crossandra, lantana, ficus hedge, porter weed)
- **Eggplant transplants (retail nurseries in 3 counties)**

ONALOOSA

SANTA ROSA

HOLMES

BAY

WALTON WASH-

IACKSON

CALHOUR

GULI

GADSDEN

LIBERTY WAKULLA

FRANKLIN

MADISON

LAFAY

ETTE

TAYLOR

- Sweet Potato field (St. John's Co.)
- Morning glory bordering vegetable field (Palm Beach **Co.)** prepared for production

Modified from: C. McKenzie, USDA-ARS

What does this mean for virus epidemics in Florida tomatoes?

- Q biotype is unlikely to be contained and will continue to spread
- Q biotype likes to feed and reproduce on tomatoes
- There are biological differences between the B and Q biotypes that affect their role as vectors:
 - May feed differently on the same hosts
 - Have overlapping but different host ranges
 - Q biotype is highly resistant to insecticides
 - Q biotype outcompetes B biotype under conditions of pesticide applications (most tomato fields)
- So it is very likely that Q that is going to be the more common whitefly in Florida tomato fields, and is going to be more challenging to manage populations of Q whiteflies in tomato fields

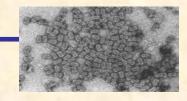
The biological differences between the B and Q whiteflies may result in the following in one or more crops in Florida:

- 1. Appearance of new viruses
- 2. Disappearance of established viruses
- 3. Changes in frequency of plants infected with any whiteflytransmitted virus
- 4. Appearance of new diseases (virus known in a crop is found in another crop for the first time)

These changes in viral pathogens can also result in regulatory responses by other states and countries that want to exclude those viruses.

Plant Viruses Transmitted by Bemisia tabaci species complex

Family	Genus	Type of Transmission				
Geminiviridae	Begomovirus	Persistent, circulative				
Closteroviridae	Crinivirus	Semi-persistent				
Potyviridae	Ipomovirus	Semi-persistent				
Betaflexiviridae	Carlavirus	Non-persistent				
Sequiviridae	Torradovirus	?				



Begomoviruses In Florida

Before B Biotype Viruses in Sida spp.

Sida golden mosaic virus (1993) Sida golden mosaic Florida virus (1995) Sida golden mottle virus (2004) Sida golden yellow vein virus (2012) Sida golden mosaic Yucatan virus (2011) Macroptilium yellow mosaic Florida virus (2003) Uncharacterized virus in Rhynchosia minima Euphorbia mosaic virus (2011) Jatropha mosaic virus (1980/2011) Abutilon mosaic virus (decades, maybe longer) Chenopodium leaf curl virus (2000/2010)

After B Biotype

Tomato mottle virus (1989) Bean golden yellow mosaic virus (1993) Cabbage leaf curl virus (1995) Dicliptera yellow mottle virus (???, 1996) Tomato yellow leaf curl virus (1997) Cucurbit leaf crumple virus (2007)

KEY: Indigenous Introduced

Other Bemisia – Transmitted Viruses In Florida

Closteroviridae, Crinivirus –

Tomato chlorosis virus (early 1990's??) *Cucurbit yellow stunting disorder virus* (2007)

 Potyviridae, Ipomovirus –
Squash vein yellowing virus (early 1990's)

Betaflexiviridae, Carlavirus – Cowpea mild mottle virus (??)

 Sequiviridae, Torradovirus (not reported from Florida yet)

Some Factors that Vary Among Different Whiteflies that Affect Transmission of Plant Viruses

Hosts of the whitefly

 If Q feeds on different hosts than B, then it may pick up different viruses or create mixed infections of different viruses that the B did; it may also change which plants serve as virus reservoirs

Feeding behavior of the whitefly on each host

- If the host is less preferred, then only probing may occur, or feeding times may be shorter
- The longer a whitefly feeds the more likely it is to acquire or transmit a virus

Resistance to pesticides

 The population size of the vector as well as seasonal variations affects how many plants will become infected

If these factors vary among biotypes, then you would expect changes in ability to transmit, or in efficiency of transmission, and in the occurrence and frequency of the transmitted viruses

What we know about how well B and Q transmit the same virus:

Virus Genus			Trans.	Difference in
virus Genus	Virus Species	by B	by Q	Trans. Rates
Begomovirus	Bean golden yellow mosaic virus	yes	?	?
	Tomato mottle virus	yes	?:	?
	Tomato leaf curl Taiwan virus	yes	yes	B better than Q
	Tomato yellow leaf curl virus	yes	yes	Similar; Q better than B
	Tomato yellow leaf curl Sardinia virus	yes	yes	Depends on host plant
	Tomato yellow leaf curl Thailand virus	yes	yes	B better than Q

 Results also vary due to differences in how each experiment was conducted, as well as the use of different whitefly colonies, hosts and virus isolates

What we know about how well B and Q transmit the same virus:

Virus Genus	Virus Species	Trans. by B	Trans. by Q	Difference in Trans. Rates
Carlavirus	Cowpea mild mottle virus	yes	?	?
	Melon yellowing-associated virus	yes	?	?
Crinivirus	Cucurbit chlorotic yellows virus	yes	yes	?
	Cucurbit yellow stunting disorder virus	yes	yes	similar
	Tomato chlorosis virus	yes	yes	?
Ipomovirus	Squash vein yellowing virus	yes	?	?
	Cucumber vein yellowing virus	yes	?	?
Torradovirus	Tomato necrotic dwarf virus	yes	?	?
	Tomato torrado virus	?	?	?

• We lack a systematic understanding of how the biological differences between B and Q effect virus transmission

Studies with Begomoviruses

Begomoviruses: B vs Q

If a whitefly can feed on the infected plant then it is likely to be able to acquire and transmit that virus....

									Colony	ť.								
Region				Ameria	cas				Afr	rica			M	iddle E	ast			sia
Virus	FN	CC	ArP	ArPu	GC	MNC	ANW	ABA	NI	SC	SAP	IsC	CyC	TC	YC	YW	PC	IW
CLCV ¹	+	+	+	+	+	+	+	-	-	+	+	+	+	+	+	+	+	+
SLCV ¹	+	+	+	+	+	+	+	-	-	+	+	+	+	+	+	+	+	+
BCMoV ¹	+	+	+	+	+	+	+	•	-	+	+	+	+	+	+	+	+	+
SGMV-H ¹	+	+	+	+	+	+	+	-	•	+	+	+	+	+	+	+	+	+
SGMV-CR1	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+
TYLCV-Y ²	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+
TLCV-Y ²	+	+	+	+	+	+	+	-	-	+	+	+	+	+	+	+	+	+
WCSV ²	+	+	+	+	+	+	+	-	-	+	+	+	+	+	+	+	+	+
PYVV ²	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-
ACMV-N ³	+	+	+	+	•	+	+	-	•	•	+	+	+	•	•	•	•	-
BLV ³	+	+	+	+	+	+	+	•	•	٠	+	+	+	+	+	+	+	+
SYVV ³	+	+	+	+	+	+	+		•	+	+	+	+	+	+	+	+	+
AGMV ³	+	+	+	+	+	+	+	+	-	+	+	+	+	-	-	-	+	+
HYVMV ⁴⁽⁵⁾	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-
AbMV4(1)	-	-	-		•	•	-	•	•	•	•	•	-	-	•	-	•	•
Biotype	В	В	в	Α	G	D	В	E	1	L	в	в	В	М	\mathbf{B}_2	\mathbf{B}_2	к	н

+ = successful transmission, - = negative transmission, * = no data. Virus originating from: ¹—the Americas, ²—the Middle East, ³—Africa, ⁴—Europe, ⁵—Far East.

However, begomovirus <u>transmission efficiency</u> can vary depending upon the whitefly, host, and virus

Bedford, et al 1994. Ann. Appl. Biol. 125:311-325

Example 2 - Differences in transmission efficiencies of TYLCV and TYLCSV by B and Q

Whitefly	Avg. Percent Transmission						
	TYLCSV	TYLCV					
MEAM1	11.8 c	33.7b					
MED	40.1ab	50.0a					

TYLCV displaced TYLCSV in tomato in Spain 1996-1998:

- 1. B and Q transmitted TYLCV more efficiently than TYLCSV
- 2. Q transmitted both viruses at higher rates than B
- 3. TYLCV had a local crop (bean) as an alternate host

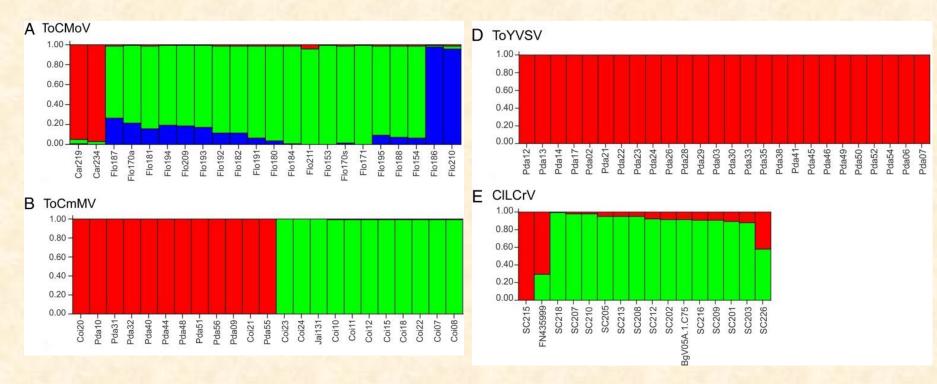
China:

- TYLCV was introduced into China in 2006, approximately 10 years after the introduction of B biotype.
- TYLCV distribution and prevalence remained limited and economic damage was minimal,
- Q biotype was introduced in 2003, after which the prevalence and spread of TYLCV accelerated.

Pan et al (2012) PLoS ONE 7(4): e34817. doi:10.1371/journal.pone.0034817

Brazil:

• Tomato golden mosaic virus (TMGV) disappeared in tomato in Brazil – 1980's


•B biotype arrived in the mid 1990's and approx. 10 new begomoviruses were reported in tomato – none of them TGMV

Rocha et al 2013 J. of Virology 87: 5784–5799

In mixed infections, begomoviruses exchange their DNA (recombine) to form new strains and new viruses

Recombination in Brazilian Begomoviruses:

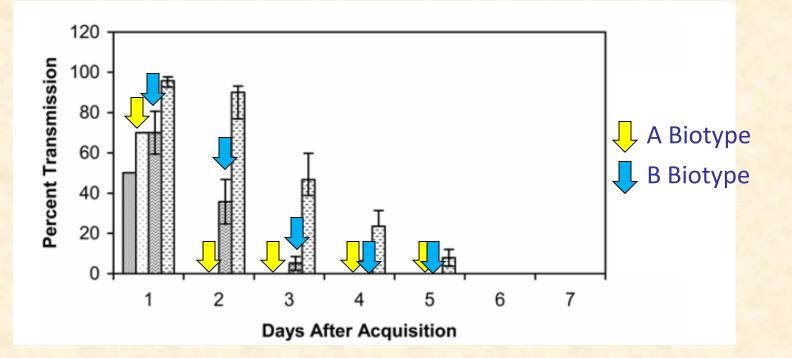
Sequences of 126 begomovirus isolates from tomato and weeds were analyzed and arranged to illustrate the extensive recombination that was found

Same color indicates same viral origin

Studies with Criniviruses

Differences in transmission efficiency can cause viruses to disappear

Example: Introduction of B biotype to CA caused a big decrease in the frequency of plants infected with *Lettuce infectious yellows virus* (LIYV)



B transmitted LIYV less efficiently than A, so when B displaced A, LIYV essentially disappeared

Cohen et al 1992 Phytopathology 82:86-90; Duffus 1995 pp 12-16 in: Cucurbitaceae '94

How long a virus is retained can vary among biotypes Example: Persistence of *Tomato chlorosis virus* in A and B

• Biotype B transmitted Tomato chlorosis virus more efficiently than A

Biotype B transmitted *Tomato chlorosis virus* for a longer period than A

Wintermantel and Wisler. 2006. Plant Dis. 90:814-819

Other Considerations:

- Whiteflies can feed differently on healthy and virus-infected plants which may change the efficiency of virus acquisition and transmission
- Endosymbionts have been shown to play a role in transmission, and the species of endosymbionts can vary among populations of the same whitefly
- While single crinivirus infections may remain asymptomatic but in mixed infections, criniviruses often interact with other viruses in plants and alter symptoms. They influence the accumulation of the other viruses present in the plant and thereby alter symptom severity.

Summary

- Biotype Q is likely to become more frequent in tomato fields over the next few years
- Q is likely to outcompete B in tomato fields (based on experiences in other locations)
- After this occurs we are likely to see established viruses at higher frequencies, we may see different viruses, and some may disappear.
- These changes in viral pathogens may result in regulatory responses by other states and countries that want to exclude those viruses.