SWFREC UPDATE

Southwest Florida Research and Education Center

JNIVERSITY of FLORIDA

2685 SR 29 North Immokalee, FL 34142

Phone: 239-658-3400 Fax: 239-658-3469 E-mail: swfrec@ifas.ufl.edu

> Update Editor: Julie A. Carson carsonj@ufl.edu

INSIDE THIS ISSUE:

Latest Research	2
Dedication Invitation	4
Staff News	5
Dr. Brar Introduction	6
Spotlight On	7
Holiday Card	8
Coming Events	8

Center Director's Corner

On behalf of our center, please accept my sincere wishes for a happy and healthy 2015 holiday season!

Our construction project, which officially broke ground

this past March, is nearing completion (see photos)! The work to build a new addition to our main building as well as renovate existing office and laboratory space is on track to be predominantly completed by year's end. In fact, our new building dedication ceremony is slated for Tuesday, January 5, at 10am! The ceremony will feature University of Florida President Dr. W. Kent Fuchs and UF/IFAS Senior Vice President Dr. Jack Payne. In addition, several key elected officials and numerous growers will be on hand for the celebration. For more information, see the invitation on page 4.

Once again, it is important for us to thank our dedicated growers who led the way to secure the \$2 million for this construction project via funds earmarked by the 2014 state legislature.

Now, we are in the process of hiring new faculty members, and this would not be possible without our growers' efforts to encourage the 2015 state

legislature to appropriate recurring funds to create these new positions.

Calvin Arnold <u>cearnold@ufl.edu</u>

Latest SWFREC Research

Novel Bed Geometry Designs for Vegetable Production

Dr. Sanjay Shukla, Water Resources Engineer, Nathan Holt, Senior Engineer, and Kira Hansen, Ph.D. Student

Vegetables are commonly grown on raised beds covered by plastic mulch in a high-input system known as plasticulture. Dr. Shukla and his team (lames Knowles, Nathan Holt) started a novel bed geometry project in 2012 to explore ways to improve plasticulture's production efficiency. The goal was to investigate bed geometry designs that could allow for lower inputs and costs while maintaining or increasing yield. This could help growers remain economically competitive and reduce impacts on surrounding environments.

The idea for looking at new bed geometries came to Dr. Shukla after interacting with vegetable growers who had been looking for economical ways to increase the lateral spread of drip-applied water, nutrients, and fumigant to get better coverage in their traditional 30 to 36 in. wide and 6 to 8 in. high beds. Furthermore, for the past 10 years, Dr. Shukla has

been thinking of ways to make irrigation water stay longer in the bed and protect crops from flooding after seeing vegetable crops damaged from Hurricane Wilma related flooding in 2005. Thus, the idea for compact beds that are taller and narrower was born. Narrower beds would achieve higher coverage with drip compared to traditional beds. Dr. Shukla believed taller beds would have several benefits, including more time for water, nutrients, and chemicals applied by drip to remain in the bed before leaching, as well as improved flood protection.

Dr. Shukla submitted a proposal to Sarasota's office of the Southwest Florida Water Management District in 2012 and received funding to test the idea for tomato. After conducting a survey of tomato growers across southwest Florida to determine conventional bed geometries currently used in production, Dr. Shukla came up with three alternative narrower and taller bed geometry designs (width x height): 24 in. x 10 in., 18 in. x 12 in., and 16 in. x 12 in. A two-season study for tomato (springs 2013 and 2014) was then conducted at a commercial farm in southwest Florida

with the three alternative beds evaluated against a conventional 30 in. x 8 in. bed. In addition, a singleseason study (fall 2014) was conducted for eggplant at a separate commercial farm where the farm's conventional bed, 36 in. x 6 in., with two drip tapes was evaluated against two of the alternative beds, 24 in. x 10 in. and 18 in. \times 12 in., with only one drip tape. Results from both tomato and eggplant indicated the compact bed geometries can be used without sacrificing yield while conservatively saving up to \$270/acre by requiring less fumigant and plastic mulch. Additional savings in fuel, labor, and land lease costs are likely to occur. Compact beds were also found to reduce irrigation by 50% and fertilizer nitrogen and phosphorus applications by up to 15% compared to the traditional bed in the eggplant study.

Findings show that transitioning to taller and narrower bed geometries can help growers become more sustainable by reducing environmental impact while providing economic benefits to help the industry remain competitive and profitable. In 2015, the Florida Department of Agricultural and Consumer Services (FDACS) provided

SWFREC UPDATE

18 in. x 12 in.

funding for further evaluation of taller and narrower compact bed geometries, including two more seasons of tomato, two seasons of pepper (a double-row crop), a study evaluating compact beds' impact on flooding and surface flows, and a complete economic analysis to better quantify impact on farm-scale profits. Drs. Fritz Roka (SWFREC economist) and Monica Ozores-Hampton (SWFREC vegetable horticulturist) have joined the research team to better quantify economic and production benefits. Kira Han-

sen, a Ph.D. student with Dr. Shukla, has Production Cost Savings (\$/acre) also joined the team the team and is working on expanding the evaluation of the compact bed design with regards to economic and environmental benefits as well as production system optimization (including plant density). Holt, who worked on the compact bed project during his master's thesis, continues to work on the project as Senior Engineer.

Figure I: Dr. Shukla (left) and his team, including Nathan Holt, Senior Engineer (middle) and Kira Hansen, Ph.D. student (right), are continuing studies to evalu-

ate compact bed geometries.

24 in. x 10 in.

Figure 2: Taller and narrower compact bed geometries (left) were evaluated against traditional short and wide beds (right) for tomato and eggplant. Picture shows compact beds (16 in. \times 12 in.) and traditional beds (30 in. \times 8 in.) in the tomato study.

18 in. x 12 in.

16 in. x 12 in.

Figure 3: Savings in production costs (\$/acre) associated with using taller and narrower compact bed geometries instead of traditional bed geometries in the tomato and eggplant studies. The savings are conservative; actual savings may be higher.

24 in. x 10 in.

PAGE 4

Staff News

 To help celebrate National Tomato Month this past October, the wellness company Lycored decided to try

for a Guinness World Record by creating a display of more than 100 varieties of tomatoes at an event in New York City's Times Square. The company tapped SWFREC vegetable horticulturist Dr. Monica Ozores-Hampton to help add to the tomato collection and serve on site as an expert who would ensure that there were, indeed, more than 100 different legitimate varieties. The event included a free tomato

salad lunch. Leftovers were given to City Harvest, a food rescue organization in New York. "I helped Lycored to collect more than 132 different tomato varieties," says Dr. Ozores-Hampton. "And I also talked to the Guinness judges and verified that the varieties were all different."

Post-doctoral research associate Dr. Francesco Di Gioia is author of the book titled Microgreens: Novel, Fresh, and Functional Food to Explore all the Value of Biodiversity, which was published in October with an ex-

tension project funded by the Italian Ministry

of Agriculture and Forestry. The book, written in Italian, English, and Spanish, is available online on the website of the project: <u>http://</u> www.gustailbiodiverso. <u>com/wp-content/</u> <u>uploads/2015/11/</u> <u>Microgreens.pdf</u>.

New publication: Ef-

Tokiaciacia soluti, toso toss actos	accounted for prior of the
Effects of Nitrogen Rates on Nitrogen,	the national crop value (US ida tomato production is co
Phosphorous, and Potassium	central and southern areas a water-holding capacity sand
Partitioning, Accumulation, and Use	are grown on raised poly beds, using predominately su
Efficiency in Seepage-irrigated Fresh	tion consists of managing a p on top of a slowly nermonial
Market Tomatoes	layer") located at ≈0.90 to 1 is pumped from the ground
Monica Ozores-Hampton and Francesco Di Gioia ¹ Institute of Food and Agricultural Sciences, South West Florida Research and Education Center, University of Florida, Immokalee, FL 34142	voirs into a series of canals delivered to the plants by ca and Muiñoz-Carpena, 2011 method is widely used by growers for its low technol costs (Zotarelli et al., 2011 benefit of selip at al., 2011 to raise the water table near
Shinjiro Sato Department of Science and Engineering for Sustainable Innovation, Soka University 1-236 Tangimachi Hachiojishi, Tokyo 192-8577, Japan	
Eric Simonne Horticultural Sciences Department, University of Florida, Gainesville, FL 32611	an attempt to increase air to degrees during freezing Hampton et al., 2010). H
Kelly Morgan Institute of Food and Agricultural Sciences, South West Florida Research and Education Center, University of Florida, Immokalee, FL 34142	of water after the freeze e rainfall may remove subst nutrients from the root z irrigated tomato crops, S actimated locess of N and
Additional index words. Solanum lycopersicum, nutrient management, nutrient accumulation, nutrient use efficiency, fertilization recommendation, Best Management Practices	35% of initial N and K avail Moreover, seepage irrigati
Abstract. Florida had the largest fresh-market tomato (Solonuus Ipcopersicum L.) production in the United States, with a value of 5437 million and 13,355 ha harvested in 2014. Despite the development of Best Management Practices (BMPs) and University of Florida/Institute of Food and Arricultural Sciences (UFI/FAS) fertilizer recommendations, tomato zerovers often	amounts of water, and has use efficiency of 30% to 2005). Seepage irrigation is one of the least efficient i

fects of Nitrogen Rates on Nitrogen, Phosphorous, and Potassium Partitioning, Accumulation, and Use Efficiency in Seepage-irrigated Fresh Market Tomatoes was published in the November 2015 issue of HortScience. Authors include Dr. Ozores-Hampton, Dr. Di Gioia, and SWFREC soil and water scientist Dr. Kelly Morgan. PAGE 6

New Citrus Horticulturist on Board

Dr. Gurreet Brar arrived at the SWFREC in November as the center's new citrus horticulturist.

He previously worked as the tree nut farm advisor for the University of California Cooperative Extension system.

Dr. Brar earned his Ph.D in horticultural sciences from the University of Florida in 2012. Earlier, he earned his MS Pomology and BS Agriculture from Punjab Agricultural University, Ludhiana, Punjab, India.

His research interests include tree physiology, orchard systems/horticulture, growth and development of nursery trees and controlled environment systems. He is also passionate about using mass media as an extension tool for his clientele as well as for science communication to cultivate scientific temper among the general public.

Dr. Brar was born and raised in Punjab (North India),

the cradle of one of the earliest agricultural settlements, the Indus Valley Civilization, which is considered as one of the most agriculturally productive regions of the world.

He is very excited to be back in Florida to serve the

Florida citrus industry. He is a proud Florida Gator, and needless to say, a huge Gators football fan.

Welcome, Dr. Brar!

250-plus growers and industry representatives participated in the Tomato Institute in September in Naples, Florida. The conference is organized in part by SWFREC vegetable horticulturist Dr. Monica Ozores-Hampton.

Spotlight On . . . Fall Vegetable Field Day

More than seventy growers, industry representatives, and other clientele participated in the UF/IFAS Fall Vegetable Field Day on December 3 at the SWFREC.

Field trials included: Vegetable Horticulture

(Dr. Ozores-Hampton, vegetable horticulturist, and Dr. Francesco Di Gioia, postdoctoral research associate): Anaerobic soil disinfestation on tomato production / Pelletized food waste and biosolids compost in tomato production.

Soil and Water Science (Dr. Kelly Morgan, soil and water scientist, and Timothy Ayankojo, graduate student):

Scheduling of tomato drip irrigation with a Smartphone App. **Plant Pathology** (Dr. Pam Roberts, plant pathologist): Late Blight on tomato / Bacterial Spot on pepper / Powdery Mildew on squash. Entomology (Dr. Phil Stansly, entomologist; Dr. Jawwad Qureshi, research associate professor; and Barry Kostyk, senior biological scien-

tist): Biological control of whitefly with the plant bug Nesidiochoris tenuis in tomato interplanted with sesame as a trap crop / Fall Armyworm control with Bt-corn and conventional insecticides / Insecticidal control of Southern Armyworm on tomato / Soil applied insecticides for control of Silverleaf Whitelfy and TYLCV on tomato / Control of Broadmite on bell pepper / Insecticidal control of Fall Armyworm on sweet corn / Pepper Weevil control with an experimental insecticide ples of anaerobic soil disinfestation.

Water Resources Engineering (Dr. Sanjay Shukla, agricultural and biological engineer): Compact bed geometry for drip irrigated tomato and pepper.

on jalapeno pepper / Tray drench vs drip applications of Verimark and reflective mulch for control of Pepper Weevil on jalapeno pepper. Indoor presentations included: **Vegetable Horticulture** (Dr. Di Gioia and Dr. Ozores-Hampton): History and princiLunch was generously sponsored by Eric Johnson with FMC Corporation. For a complete set of the field day handout, click here <u>http://swfrec.ifas.ufl.edu/aboutus/news_updates/</u> and scroll down to "Field Days and Workshops."

Coming Events

December 25-January 3: UF Holiday Break. SWFREC will be closed and will reopen on Monday, January 4, 2016.

January 5: Building Dedication Ceremony. 10am. SWFREC. For more information, see page 4.

January 12: Citrus Squeezer: All You Need to Know about Scouting and Management of Citrus Insect Pests. 10am-1pm. SWFREC. 2 CEUs for Certified Crop Advisors, 2 CEUs for pesticide license renewal. SWFREC speakers will include entomologist Dr. Phil Stansly, research associate professor Dr. Jawwad Qureshi, and senior biological scientist Barry Kostyk. To register, contact Mongi Zekri, Hendry County Extension, at 863-674-4092 or e-mail maz@ufl.edu.

January 18: Martin Luther King Jr. Birthday. SWFREC will be closed.

February 4: Certified Pile Burners Course. 8:30am-4:30pm. SWFREC. Attendance is limited to the first 50 registrants. For more information, contact Mongi Zekri, Hendry County Extension, at 863-674-4092 or e-mail <u>maz@ufl.edu</u>.

February II: Citrus Squeezer:

All You Need to Know about Scouting and Managing Citrus Fungal Diseases. 10am-1pm. SWFREC. 2 CEUs for Certified Crop Advisors, 2 CEUs for pesticide license renewal. Dr. Pam Roberts, SWFREC plant pathologist, will be a speaker. To register, contact Mongi Zekri, Hendry County Extension, at 863-674-4092 or e-mail maz@ufl.edu.

