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enhancement, and shown to be very successful in spectral 
regions of interest, and is becoming more commonly used as an 
alternative to spectral derivative methods [12]. Interpolating 
polynomials are used to smooth the data and better represent 
enhanced spectra [10-11]. Multivariate analysis can be used to 
gain a better understanding of spectral variance between 
diseased and healthy reflectance properties [2,5,6].  

In this study we are examining two healthy plant species, two 
diseases associated with these plants and two abiotic stressors 
that mimic disease symptom properties in reflectance spectrum. 
The Sugar Belle tangerine and the canker diseased states of this 
plant at various stages of the disease infestation is the first plant 
reflectance that are studied. The second is the avocado plant and 
the Laurel wilt (Lw) disease infection of this plant as well as iron 
(Fe) and nitrogen (N) deficiencies in the avocado that present 
similar symptoms as the Lw. We chose to study these two 
groups of plants first, since these two plants are the highest yield 
crops in Florida. Also, the hyperspectral data for these two crops 
was readily obtained. Healthy and Lw infected avocado data was 
collected through hyperspectral camera data collection 
techniques. Lw is an almost always lethal disease in the 
avocado, caused by infestation of Asian fungus Raffaelea 
lauricola delivered to the plant via injection by the redbay 
ambrosia beetle through its feeding apparatus tissue, mycangia 
[13]. Other avocado leaves that were abiologically stressed and 
suffered mineral deficiencies (iron (Fe), and nitrogen(N)). Both 
deficient groups were included in the test sample data.   

Citrus bacterial canker (CBC), caused by Xanthomonas citri 
subsp. citri (Xcc; syn. X. axonopodis pv. citri), is a serious 
disease of citrus worldwide [15]. The Florida Sugarbelle citrus 
crop has suffered serious consequences over the last decade and 
methods to detect the disease early is critical.  Symptoms include 
necrotic, raised lesions with yellow halos leaves, and twigs [17]. 
The bacterium is dispersed by wind and rain and prefers humid-
wet climates [15]. On severely infected trees, the pathogen can 

Transform has been used and compared to derivative spectra
[8-9], and derivative spectral shape equation [5]. Wavelet
methods, such as finite differencing [3], complex step derivative
normalization and derivative spectra enhancement using various
approaches [1-12]. Several common analysis techniques include
using advanced and sophisticated hyperspectral data analysis

Many diseases associated with plants are being detected
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cause severe premature leaf and fruit drop, twig dieback, 
blemished fruit, and tree decline, resulting in significant 
economic impacts [17]. Visually, a plant may look healthy, but 
in fact, the bacterial growth stages take a few months to show 
symptoms. Late symptoms of this disease may appear within 
only a few months from the infection. 

   Hyperspectral data from infected and healthy plants were 
collected and verified for registration of data. Radiance to 
reflection conversion was done.  Normalized data was used for 
all calculations.  Preprocessing methods that were used are 
described in section II. Smoothing of the data by either a median 
filter or other higher order filter such as the Savitzky-Golay filter 
are often performed on the data for spectral feature enhancement 
and denoising of the data [1-3]. In our case, an interpolating 
polynomial was used to better fit the data and allow for 
analytical derivatives to be taken.  

   Using multivariate analysis, we are able to prove that there 
exist specific variance patterns in a diseased verses healthy cell, 
especially over a mean statistical population (ref. Figs. 3,6). 
Taking the eigenvector components and establishing a basis 
vector for classification of core healthy species and for the 
disease factor species, fundamental waveforms, or basis 
signatures were calculated to help identify disease and establish 
baseline biomarkers for two different diseases in two different 
species of plants.  

II. STUDY SITE AND METHODS  

A. Plant and Sample Select  

To induce Lw, ten plants were randomly selected and 
inoculated with Raffaelea lauricola. Four holes were drilled into 
different sides of each plant’s stem with a 7/64″ drill bit 5 cm 
above the graft union, and 25 μL of inoculum prepared with a 
hem cytometer at a concentration of 30,000 CFUs/mL was 
pipetted into each hole and wrapped with parafilm to seal the 
wound. Four leaves per plant were sampled from each of 10H 
and the inoculated plants 

Tangerine Sugar Belle leaves infected with canker disease 
and healthy leaves and fruits were collected from an 
experimental orchard at the University of Florida’s Southwest 
Florida Research and Education Center (SWFREC), 
Immokalee, Florida, USA, for laboratory assessment on October 
2018. Four trees were selected, and 10 leaves were collected 
from each tree in different disease severity stages including (i) 
asymptomatic stage (leaves without visible symptom); (ii) early 
stage (symptoms appear as slightly raised, small, blister-like 
chlorotic lesions); and (iii) late stage (lesions turn tan and then 
brown, and the edges appear water-soaked and develop a yellow 
halo). The UAV data was collected in the same field (October 
2018, between 10 a.m. to 2 p.m. 

B. Spectral Data Collection 

 Spectral data collection of avocado 
Five scans per leaf (five locations per leaf) were taken for 

each healthy, Lw, and deficient leaf samples. These samples 
were collected between 350 and 2500 nm utilizing a 
spectrometer (SVC HR-1024, Spectra Vista Cooperation, NY) 
with 1.3- nm average spectral resolution and 4° fields of view in 
laboratory conditions. For data analysis, only the spectral range 

of 400–970 nm was used.  Two halogen light sources were used 
to create optimal conditions for performing the scans and 
reducing errors. The SVC device was situated so that the lens 
was 50 cm above the sample pointing down at it. Spectral 
signatures were calibrated with a barium sulphate standard 
reflectance panel (Spectral Reflectance Target, CSTM-SRT-99-
100, Spectra Vista Cooperation, NY) before and immediately 
after every 8 samples measurements. Black fabric was utilized 
as background 

  Outdoor Hyperspectral Data Collection 
 Hyperspectral data was collected by using a UAV (DJI 

Matrice 600, Pro Hexacopter) and the same hyperspectral 
camera, Resonon Pika L 2.4.The UAV-based imaging system 
includes (i) a Resonon Pika L 2.4 hyperspectral camera 
(Spectronon Pro, Resonon, Bozeman, MT); (ii) visible-near 
infrared (V-NIR) objective lenses for the Pika L camera with a 
focal length of 23 mm, field of view (FOV) of 13.1 degrees, and 
instantaneous field of view (IFOV) of 0.52 mrad; and (iii) a 
global positioning system (GPS) and the inertial measurement 
unit IMU (DJI) flight control system for multi-rotor aircraft, to 
record sensor position and orientation. Data was collected at 30 
m above the ground with a speed of 1.5s/h. The positions of the 
infected trees were known (leaves were collected and identified 
by PCR). The maps and images were analyzed by the 
Spectronon software after hyperspectral data were acquired. 
Calibration corrections were performed using Resonon 
hyperspectral data analysis software (Spectronon Pro, Resonon, 
Bozeman, MT). Georectification and radiometric correction 
plugins, from the Spectronon Pro software, were used to correct 
the GPS/IMU and the radiometric data, respectively. The 
regions of interest were selected manually (and randomly) for 
each tree, and 20 spectral scans were performed to ensure that 
the entire canopy was covered spectrally. The regions of interest 
were then exported as a text file. Pixel-based reflectance data 
was mixed for each class.  

C.  Higher Order Spectra Enhancement 

 Normalization Data Analysis  
 The first step in the data enhancement process was 
performing a Standard Normal transformation of the reflectance 
data, � . The Standard Normal transformation was used to 
provide preservation of data integrity, and restructure the data 
into a reasonable population domain. The Standard Normal 
transformation used is given by its probability density function 
of (1): 

 �(�|μ, σ) =  
�

�����
���  (1) 

Where 

 � =
(���)�

��
 (2) 

Represents the normal distribution parameter; � represents the 
mean of the population and � represents the standard deviation. 

 
  Higher-Order Spectral Analysis 

Divided differences will reveal with higher resolution 
where inflection points, local minima, and maxima occur in 
healthy data samples, and how these points vary with the 
various categories of disease/deficient data sets that are tested. 
These variants prove to be unique to the signature attributes 
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and are distinguished in the multivariate analysis and 
characteristic polynomial fit process later developed in this 
work. Considering how these higher-order data functions 
correlate at regions of interest in the spectrum allow for the 
categorization of plants into their respective states (i.e., 
healthy, deficient, diseased). Methods for second order 
forward differencing were applied previously [17] for 
enhancing spectra for the avocado data. In order to reduce the 
effects of numerical differentiation noise sensitivity, an 
interpolating polynomial is estimated prior to numerical 
differentiation. In the case for the citrus data, a five point 
centered difference formula using Stirling’s formula of 
divided differences was used to approximate the third order 
polynomial associated with each state of the hyperspectral 
data. This was done to increase the degree of error to 
�(��),  where �  is a reflectance value between steps, �� −
ℎ <  � <  �� + ℎ  The third order polynomial is then 
approximated by 

 ��(�) = �[��] +
��

�
(�[���, ��] + �[��, ��]) +

               ��ℎ��[���, ��, ��] +
���������

�
(�[���, ��, ��, ��] +

               �[���, ���, ��, ��])   (3)                                                     

With the general central- difference formula being given by: 

������, … ��,… ����� = 
�

��!�� δ��(��) (4) 

  for step size h, 

 h = ���� − ��  (5) 

for each � = 0,1, … , � − 1 and � = �� +
�ℎ, so that the difference � − �� = (� − �)ℎ. The average step 
size over all the computations is 2.1854 nm.  

 Analytical Derivative Analysis 
 The interpolating polynomial provided the necessary 
smoothing of the data such that it was straight forward to apply 
a derivative formula to the interpolated data. A Newton’s second 
order divided difference approximation was used to provide 
accuracy for not only the interior points, but also for the 
endpoints. The interior points were found by differentiating the 
three point formula and setting �� = � − ℎ, �� = �, ��� �� =
� + ℎ . To achieve �(ℎ�)  approximations for the second 
derivatives at the endpoints, a four point formula was used. 
These methods are derived in the literature [19] and are given 
for our calculations in Table 1. 

 

 

 

 

 

 

NEWTON’S SECONDD ORDER DIVIDED DIFFERENCES’ FORMULAS FOR ��
�� 

TABLE I.  NEWTON’S THIRD ORDER DIVIDED DIFFERENCES’ FORMULAS 

FOR ��
�� 

Section of 
Polynomial 

NEWTON’S SECOND ORDER DIVIDED DIFFERENCES’ 

FORMULAS 

��
�� Error 

Interior 
points 

1

ℎ�
(��(� + ℎ) − 2��(�) + ��(� − ℎ))  �(ℎ�) 

Endpoint 
(left) 

1

ℎ�
(2��(�) − 5��(� + ℎ)

+ 4��(� + 2ℎ)
− ��(� + 3ℎ)) 

�(ℎ�) 

Endpoint 
(right) 

1

ℎ�
(2��(�) − 5��(� − ℎ)

+ 4��(� − 2ℎ)
− ��(� − 3ℎ)) 

�(ℎ�) 

 

 Multi-Variate Analysis 
The formal process of defining spectrums for healthy 

plants, the detection of diseased species by stochastic analysis 
based on these spectrums, and classification established 
through variation of defined signature of healthy verses 
diseased plant specimens is the premise for this paper. By 
using multivariate analysis with K-means clustering and 
applying an optimal orthogonal basis vector for classification, 
we are able to distinguish between infected and healthy citrus 
plants. The multivariate approach uses several spectral bands, 
with the X-variate matrix based on twenty wavebands. The 
cross-covariance matrix is derived through variance (��

� ) and 
covariance (���) of the X-variate matrix. The eigenvectors are 
used to distinguish the modal components associated with 
greatest variance between infected and healthy plant species.  
We obtain the X-variate matrix, for leaf reflectance at varying 
wavelengths: 

 � =  �

��� ⋯ ���

⋮ ⋱ ⋮
��� ⋯ ���

� (6)    

We can represent this matrix in vector form as X = [x1 ,  x2 ,… 

xn ]. The data for the reflection coefficients are given by the 

matrix elements and represent data in the wavebands from 488-

569 nm. The cross-covariance matrix is then obtained from 
cov(��, ��) = �[(�� − �̅�)(�� − �̅�)�] = �����

�  

 C = �
���(��, �� ⋯ ���(��, ��)

⋮ ⋱ ⋮
���(��, ��) ⋯ ���(��, ��)

� =

             �

���
� ⋯ ���

���

⋮ ⋱ ⋮
���

���
⋯ ���

�
� (7) 

Where � is the covariance of the x independent variates.  
The KLE is an optimal transformation along all orthogonal 

component vectors. The KLE process determines a formal 
decorrelation of signal energy into a redistribution that weighs 
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more heavily the components of highest energy contribution 
for a particular system. Therefore, the KLE realizes the lowest 
order model for L that adequately describes the main functional 
contributors to the equilibrium of a system, in our case, a plant 
reflectance spectrum which relates to its cellular dynamics.  

A KLE estimate of the covariance matrix can be approximated 

and applied as described by: 

 Y =���x1  + ��� x2  +… ���xn (8) 

Then by Spectral Decomposition Theorem,  

 C�� = ���� (9) 
 
The �� are the eigenvalues which correspond to the 
eigenvectors of the cross-covariance matrix.  
The variance for the �� component of the linear transformation 
model is equal to the variance of the corresponding eigenvector 
equation, which is equal to the eigenvalue: 
 ���(��) = ���(����� +  ����� + ⋯ �����) =  �� (10) 
    
An approximation matrix, Z, can be formulated in accordance 
with the explained percentage of the variance given by: 

 � =
∑ ��

�
���

∑ ��
�
���

 (10) 

Where � =  ������ �� ������� ����� ���������� <  � 
The denominator of L is also known as the trace and equals the 
sum of the eigenvalues. The goal is to maximize L with the 
least amount of modal components of the numerator. 
� represents the optimal number of eigenvalues necessary to 
accurately approximate the signal energy spectrum. 
Our approximation matrix then becomes: 
 

 �� =  ∑ ���
�
���    =  ∑ ����

���
���  = ��� (11) 

 
The �� matrix is a reconstructed KLE approximation of the 

original multivariate data and contains only the pertinent 
feature components of the data minus the extraneous noise and 
other factors that account for less than (100-�)% of the data. 
The eigenvectors associated with this matrix are fundamentally 
important to the signature extraction process, which is 
developed in section II-D.  

D. Signature Extraction Methodology 

 An approximation for the plant cell reflectance can be 
mathematically modeled by applying basic signal processing 
techniques from hyperspectral data, or other sensing devices. 
Signatures of average reflectance for specific plants can be 
found as well as variations caused by disease and other 
environmental factors. The novelty that we address in this paper 
is that of data significance and data reduction, to provide a 
feature extraction analysis that most accurately represents the 
frequency spectrum of a plant, and variations of that signature, 
caused by disease, and/or other possible stressors. Large 
sequences that represent a signal usually contain aspects of the 

signal that are irrelevant, noise-injected and erroneous. 
Methods to eliminate the singularities and irrelevant 
discriminant nodes are undertaken in a lean operation after 
Fourier decompositon is applied. The time domain signal is 
extracted and reduced series frequency and phase  
representation (signature) is verified as a feature identification 
method to be used for classification and diagnostic purposes. 

 Frequency Analysis 
The variate data is given per wavelength in the spatial 

domain. A translation to frequency domain was carried out to 
better understand the frequency component aspect of the data. 
From this translation, the frequency decomposition was 
carried out. For specific Regions of Interest (ROIs), the 
Fourier coefficients were obtained via inverse Fourier 
transform per derivation given below in equations (12) -(16). 
Several ROIs were selected where the second order derivative 
critical points were of significance. The focus is to evaluate 
these regions, develop the Fourier spectrum representation 
(i.e. signature) within these regions, and use these mapping as 
proof of concept for the total spectral signature representation 
of the specific cell reflectance spectra. 
Fig. 1 shows an example of a normalized frequency graph of 
the Sugarbelle tangerine. 
A Fourier Transform of the data is carried out by sampling 
� =4096 data points in the region of normalized frequency 0-
2π radians/sample. A truncated series expansion can then be 
written using the method of Fourier transform in this case: 
 
 �(�) =  ∑ ������ ���

���  (12)  
 
                              �(��) =  ∑ �����������

���  (13)  
For 
 

  � = 0,
�

��
,

�

��
, …

(���)

��
 

 
Where �� = Lowest frequency , �� = �������� ���� ,      
�� =  nf� ,   for n=1,2 … N                      
t� =  discrete-time steps,    a� =  Fourier coefficients 
 

 
Fig. 1. Normalized Frequency graph of Sugarbelle Tangerine 
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Then define x�, for the sampled frequency data to be: 
 
 (��) =  ∑ �����

�
����  (14) 

 
 x� = a�� (15)                                        
 
Where A = sampled frequency data amplitudes 
x� = sampled frequency component vector of x�values 
a� = Fourier coefficients vector for (12) and (13)                                                    
Solving for the coefficient vector: 
 
 �� = ����� (16)                                        
 
The method can be applied for various expansion sets. Using 
wavelet packet transform, a similar nonlinear scalar wave 
function can be applied to form a complete orthonormal basis 
system of functions. We conjecture that other orthogonal basis 
sets can also be formulated and verified, with similar 
efficiency. The next step in this design process is the 
projection of these higher dimensional functions onto a lower 
dimensional space by truncating the series with optimal 
preservation of signal signature information. 
 

 KLE Eigenvalues Association 
 

Having found a way to estimate the frequency spectrum of 
the plant reflectance signature, it is desirable to accurately 
extract the feature frequencies that best describe the signature. 
We consider how the eigenvalues from the KLE effects the 
dimensional reduction in the Fourier domain. The greatest 
eigenvalue (by spectral decomposition) is significant in the 
sense that it relates to the component of greatest energy level 
of the signal sequence, whether that sequence be developed by 
a Taylor series or transcendental function expansion. Relating 
this to our estimate of the cross-covariance matrix (6): 
 

 �(�) = ���
�������

���  + ���
��������� + ���

���������� +

                                                       …  ���
�������

��� (17) 

 
Since we are only interested in the real, positive frequencies of 
the spectrum, (17) can be rewritten as: 
 

 �(�) =  ℝ�∑ ���
�

������
����

��� � (18) 

 

 �(�) =  ∑ ���
cos(2����

�
��� � + φ) (19) 

                    
Where  
 
��� , ��� … ���  ��� �ℎ� ������ ����������� �������������  

���ℎ �ℎ� ������� �� � �������� ����� ������������ 
�� �ℎ� ����� ���������� ������  
���

, ���
, … ���

 

��������� �ℎ� ������� ������������ �� �ℎ� ������� ������ 
 ����������� 
And φ =  phase angle 

To find the corresponding truncated frequency series, using 
inverse transformation of (19) 

 

 �(�) =  ℝ �
�

�
∑ ���

�
�������

����
��� �      =

                       
�

�
∑ ���

cos(−2����

�
��� � + φ) (20) 

 

 �(�) =  
�

�
∑ ���

cos(2����

�
��� � + φ) (21) 

 
These energy frequencies are associated with the eigenvalues 
of highest to lowest magnitude (��� , ��� … ��� ) of the cross-

covariance matrix as found by the linear regression 
approximation found in (10). Projecting these onto the Fourier 
domain space, the frequency components associated with 
these higher ranked eigenvalue variables (frequencies, in our 
case), are mapped onto the frequency domain. The sequence is 
then truncated such that the frequencies associated with the 
highest signal energy are used to approximate the truncated 
series. 

III. RESULTS 

A. Multivariate Analysis of Citrus Canker 

In the case of the lab data for the population of citrus 
leaves, a KLE process was performed and the first two modal 
components were found to carry ~96% of the variance of the 
linear regression system model. A K-means clustering 
algorithm was used to distinguish healthy from infected citrus 
canker. An optimal orthonormal basis vector was also used in 
this classification model. Out of over 300 leaves tested, less 
than one percent were categorized incorrectly. This is shown 
in Fig. 3 below. 
This combination of preprocessing, multi-variate analysis for 
data reduction, K-Means clustering with applications of 
shortest Euclidean distance formula and application of the 
orthonormal basis vector for verification and correction, have 
proved to be accurate for classification over 99.98% of the 
population. 
To derive the optimized spectrum, the data for each averaged 
spectra (healthy, canker) was transformed to the frequency 
domain and sampled at 651.9 rad/sample in normalized 
frequency space. The time domain spectra are shown in Fig. 4. 

 
Fig. 3. KLE with K-Means clustering and Orthonormal Basis Vector. 
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Fig. 4. Time Domain Signature for healthy and citrus canker (various stages) 
 

 
Fig. 5. Reduced Phase Domain Signature for healthy and citrus canker 

(various stages) after KLE reduction technique 

 
It can be noted that the morphological effects of the disease 
change the spectrum in the 40-120 ps region in particular. The 
envelope becomes peaky as soon as disease is present in the 
cell. Applying the KLE, at the ROI 402-548 THz, and 
producing the phase spectrum for �=4, the graphs of the phase 
magnitude are shown in Fig. 5. The equations for the 
signatures is found by using the first four highest eigenvalue 
frequencies (normalized) which are given at 3.342, 1.423, 
2.558 and 1.967 related to the covariance matrix 
approximation. They are given here in (22) -(24), representing 
healthy, early-stage, and asymptomatic respectively. 
 
 �(��) = 10��{3.32 cos(6.684�� + .767) +
.82 cos(4.47�� − .268) + 11.72 cos(8.04�� + .469) +
1.72 cos(6.18�� + .1615)}  (22)                                                      
 
 �(��) = 10��{3.37 cos(6.684�� + .6657) +
.83 cos(4.47�� − .1583) + 10.71 cos(8.04�� + .4797) +
1.99 cos(6.18�� + .0654)}  (23) 
 
 �(��) = 10��{3.43 cos(6.684�� + .692) +
.83 cos(4.47�� − .1633) + 11.79 cos(8.04�� + .4382) +
1.71 cos(6.18�� + .0835)}  (24)                                                                
 

 
 

 
Fig. 6.   KLE with K-Means clustering for third order Avocado data for Fe-

deficient, N-deficient, Healthy and Laurel Wilt 
 

      
     Fig. 7. Reduced Time Domain Signature for healthy and  Lw, N, Fe 

deficiencies (KLE reduction technique) 

 

B. Multivariate Analysis of Avocado Laurel wilt, Fe-
deficiencies, N-deficiencies 

The results for the avocado data set in distinguishing Laurel 
Wilt, Fe deficient, N deficient from healthy are shown in Fig. 6 
and 7. The results were 100% accurate in distinguishing various 
stages of the Lw disease and deficient avocados from healthy 
avocados. Using multivariate analysis with the Euclidean 
distance formula, with respect to the centroids of each group, 
we were able to distinguish variance in the data presented in the 
KLE third dimensional space. Three dimensions were used to 
represent the variance described by the first three principal 
components, or 47.9926% of the data. Adding up to seven 
modal components only increased the representative variance 
to 62.41% (i.e. total variance ~76.9%). Using the first three 
eigenvalues we were able to establish 100% classification 
accuracy using multivariate analysis with applications of the K 
nearest neighbor (KNN) distance formula. 
Others [6,11] used neural networks to optimize the linear 
regression coefficients or eigenvectors of the system which 
can be associated with the cross-covariance matrix. By 

0886



spectral decomposition, the eigenvalues are calculated and 
used to associate these to the frequencies associated with the 
corresponding frequencies of the Fourier transform. This 
reduced, optimized spectrum is then used to distinguish 
categories of healthy from infected species. For the avocado, it 
is shown that using the first three modal components of the 
population variance matrix, we are able to distinguish healthy 
from two various deficiencies and the Laurel Wilt disease. 

IV. CONCLUSIONS 

We have shown in this paper a novel approach to finding 
optimized frequency spectrums (i.e. signatures) of plants, and 
how these spectrums vary when various diseases and nutrient 
deficiencies are present. The method uses multivariate 
analysis, in particular, KLE to define the highest absolute 
value of the eigenvectors responsible for the fundamental 
reflection pattern of the cell and how these patterns are 
interrupted and changed by disease and malnutrition effects. 
The application of KLE and spectral decomposition to define 
the principle eigenvalues of the cross-covariance matrix, 
played a major role in developing a series truncation process 
in the frequency domain. Realizing the value of this concept, a 
relationship between the effective eigenvalues and the primary 
frequency component transformation process, has allowed us 
to develop spectral identification features or biomarkers that 
can be used as healthy plant and disease signatures for 
classification and diagnostic purposes.   
A spectral dictionary or database for classification purposes of 
diseases in plants is also the basic premise set forth in this 
work. Generating a database of healthy and disease spectra or 
signatures could be used for diagnostics, based on the 
underlying principles of optical reflection theory. These 
signature databases can be useful in disease determination 
since it would utilize less invasive methods and only rests on 
the principle of understanding frequency signature 
components of both disease and healthy specimens. Matched 
filtering, correlation, convolution and neural network 
principles could then be readily applied for classification, 
based on biomarker signature. 
The other noteworthy conjecture from this research is the 
premise that once a disease factor enters a cell, it 
fundamentally changes the natural vibration of the cell, 
thereby varying its optical reflectance. By examining the 
changes in the cell signature, a healthy vs. diseased state of a 
cell can be differentiated. Thus, we can build a case for 
spectral identifiers or biomarkers of a disease based on its 
optimized Fourier spectrum. 
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