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A B S T R A C T

Several vegetation indices have been developed, with the normalized difference vegetation index (NDVI) been
the most studied and commonly used. To generate an NDVI map, a relatively high-cost multispectral sensor is
required; but currently, most UAVs are equipped with low-cost RGB cameras. For that reason, other indices that
utilize RGB data have been developed to generate maps similar to NDVI and minimize the data acquisition cost,
such as the triangular greenness index (TGI) and the visible atmospheric resistant index (VARI). However,
several studies found that these indices cannot be recommended as reliable general-purpose crop health in-
dicators. This study utilizes a genetic algorithm to develop a new visible index (visible NDVI; vNDVI) that
estimates NDVI values of vegetation from uncalibrated RGB cameras mounted on UAVs (or other remote sensing
platforms). Three experiments were conducted to create and validate the proposed index. First, the NDVI values
generated from a multispectral camera were compared with the NDVI values generated by a hyperspectral
camera. In the second experiment, the vNDVI formula was created using a genetic algorithm. The third ex-
periment validates the proposed vNDVI, generated from two uncalibrated RGB cameras, in three different crops
(citrus, grapes, and sugarcane). The proposed vNDVI proved to be highly accurate on estimating NDVI values by
just using RGB cameras, with an overall mean percentage error of 6.89% and a mean average error of 0.052 in all
three crops, providing a low-cost alternative for remote sensing and plant phenotyping.

1. Introduction

Enormous efforts are being applied to analyze plant genetics and
develop crop varieties with high yield, environmental stress tolerance,
and disease resistance (Cuenca et al., 2013; Rambla et al., 2014).
Breeding analysis requires many years to be implemented in order to
develop, select, and release new crop varieties (Sahin-Çevik and Moore,
2012). A key point on new breeding programs is the creation of a huge
amount of genetically diverse training population (Aleza et al., 2012).
Traditional sensing methods for phenotypic analysis rely on manual
sampling and are very labor-intensive and time consuming (Mahlein,
2016; Shakoor et al., 2017; Cruz et al., 2019). Furthermore, field sur-
veys are important for plant inventory, plant health analysis, and pest
and disease detection, which are also labor-intensive and time-con-
suming processes (Luvisi et al., 2016; Cruz et al., 2017; Partel et al.,
2019a,b).

The use of remote sensing systems like satellite imagery, small air-
planes, and unmanned aerial vehicles (UAVs) together with big data
analytics and artificial intelligence (AI) provide new tools for plant

phenotyping (LeCun et al., 2015; Kussul et al., 2017). In agriculture,
there has been a rising demand in remote sensing for its capabilities of
collecting data in a shorter time with less manual labor and minor
impact on the fields. For example, Wulder et al. (2004) proposed a
method to compare the results of identification of individual trees on
using the airborne Imaging Sensor II (MEIS II) and the IKONOS satellite.
Santoro et al. (2013) proposed another procedure for individual fruit
tree identification using GeoEye-1, utilizing a four-step algorithm that
showed consistent results in fast capturing tree positions, but suffered
when detecting trees of different varieties and ages, as well as in high-
density tree spacing.

UAVs using a variety of different sensors are becoming a flexible
and cost-effective solution for a rapid and accurate non-destructive crop
analysis (Malek et al., 2014; Pajares, 2015; Singh et al., 2016).
Crommelinck et al. (2017) showed that UAVs can cover areas at much
lower heights generating high resolution images while keeping a low
operation cost (Franzé et al., 2017). Ampatzidis et al. (2019) utilized
UAVs and AI to evaluate citrus rootstock varieties, and Abdulridha et al.
(2019a) and Harihara et al. (2019) developed UAV-based early disease
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detection systems for citrus and avocado utilizing hyperspectral ima-
gery.

Several vegetation indices (VIs) have been developed, from UAV (or
other remote sensing platforms) collected data, for plant phenotyping,
including indices to assess plant health status, plant water status or
water stress, and for disease detection (Ampatzidis et al., 2017;
Abdulridha et al., 2019b,c). A vegetation index represents a combina-
tion or a filtering process of multiple spectral data sets to create a single
value for each point in an image, generated usually by a mathematical
model and used to develop a scale color map (McKinnon and Hoff,
2017). One of the most commonly used and studied vegetation index is
the normalized difference vegetation index (NDVI) (Rouse et al., 1973).
Initially, the NDVI was developed to generate a good correlation be-
tween NDVI values and grassland vegetation data (e.g., dry and green
biomass) (Rouse et al., 1973).

Hunt et al. (2010) analyzed UAV multispectral imagery to monitor
crops, and a good correlation between leaf area index and green NDVI
(Gitelson and Merzlyak, 1996) was found. A vineyard vigor map was
proposed by Matese et al. (2013) utilizing the NDVI, calculated with a
high-resolution multispectral camera. Besides the healthy status index,
the NDVI can provide, for each plant, specific features that can be used
for plant detection, as proposed by Ampatzidis et al. (2019). NDVI has
been used for many different purposes as spatial referencing, crop and
climate monitoring, attribute mapping and in several decision support
systems (Panda et al., 2010; Abdulridha et al., 2018).

To generate an NDVI map, a multispectral sensor operating in the
near infrared (NIR) wavelength is required. However, multispectral
cameras are usually more expensive than RGB cameras, and require
time-consuming calibration procedures. Currently, conventional RGB
cameras with high resolution are available from several manufacturers
and the majority of UAVs are equipped with standard RGB cameras
(Rabatel et al, 2011). Therefore, several plant indices were created
using just conventional RGB channels to make the data collection more
accessible.

Arai et al. (2016) proposed a method for NIR reflectance estimation
utilizing visible cameras, achieving a high correlation between green
reflectance and NIR reflectance. Using the concepts of ARVI (Kaufman
and Tanre, 1992) to reduce atmospheric effects over the vegetation
index computed using visible range of spectrum, Gitelson et al. (2002)
proposed the visible atmospheric resistant index (VARI), which was to
be used for estimating the fraction of vegetation in a scene with low
sensitivity to atmospheric effects. However, as pointed in Gitelson et al.
(2002), reflectance from green vegetated surfaces is not so high and the
difference between the reflectivity levels of visible channels are not
higher than between NIR and red, used to get the NDVI. The triangular
greenness index (TGI), presented by Hunt et al. (2013), uses the area of
a triangle in the spectral features of chlorophyll region and was de-
veloped to facilitate the imagery acquisition using just RGB channels
instead of multispectral channels, to generate a chlorophyll content
index. The results using these indices did not show any trend in data
tested by McKinnon and Hoff (2017), and neither the TGI nor VARI can
be recommended as a reliable general-purpose crop health indicator
(McKinnon and Hoff, 2017). Zhang et al. (2016) created the synthetic
NDVI time series, obtained by sensor fusion of high resolution RGB and
low resolution NDVI satellite imagery, to access NDVI information with
higher ground resolution for grassland biomass estimation. The study
used a support vector machine to create the resulting biomass index,
which got a good correlation to above ground biomass.

In this study, a new methodology was developed to calculate an
estimation for the NDVI, based just on the three channels of RGB
conventional cameras, using UAV imaging. The equation proposed
(visual NDVI; vNDVI) was created on a genetic algorithm that uses the
correlation between the RGB channels and the NDVI, calculated with
multispectral data. This index can be generated with data collected by a
low-cost and high spatial resolution RGB cameras, providing an easier
and accessible tool for plant phenotyping. It can also be used in satellite

images that usually provide low spatial resolution multispectral data
and high spatial and temporal resolution RBG data.

2. Materials and method

2.1. Vegetation Indices: NDVI and VARI

NDVI (generated by multispectral cameras) and VARI (generated by
RGB cameras) are some of the most commonly used indices for vege-
tation assessment. Considering that plants have a higher reflectance in
the near infrared (NIR) bands and low reflectance in the red bands, the
NDVI formula evaluates this difference as it is presented in Eq. (1)
(Rouse et al., 1973). Rouse et al. (1973) showed a good correlation
between the NDVI and grassland vegetation data (dry biomass, green
biomass, and percent green estimates).
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+

NDVI NIR Red
NIR Red (1)

To monitor the vegetation fraction of wheat canopies, Gitelson et al.
(2002) proposed a VI based on the red and green wavelengths, as shown
by the Eq. (2):
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Then, using the concept of ARVI to reduce the atmospheric effects
(Kaufman and Tanre, 1992), assuming that the effect in the blue wa-
velengths is two times bigger than in the green and red wavelengths,
the visible atmospheric resistant index (VARI) was generated by the
subtraction of the blue wavelength from the denominator of Eq. (2).
The VARI, shown in Eq. (3), is used for estimating the vegetation
fraction in a scene with low sensitivity to atmospheric effects.
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The VARI is one of the most commonly used indices for collecting
data from vegetation by utilizing only RGB cameras. It was not devel-
oped to predict NDVI values, but as an RGB-based crop index.

2.2. Genetic algorithm

In order to develop an NDVI based on RGB, named herein as a
visible NDVI (vNDVI), a function that depends on these values (red,
green, and blue bands) is needed. The proposed topography for the
function is shown in Eq. (4), where red, green and blue are the nor-
malized values of each spectrum for the image pixel. The weights (w)
and camera coefficient (C) are the set of constants to be found. This
formula was selected from manual trials of different topography.

= = ∗ ∗ ∗vNDVI F camera red green blue C red green blue( , , , ) ( )w w w1 2 3

(4)

To find the weights for the vNDVI, a genetic algorithm (GA) was
developed to identify an optimal function that could relate the data
gathered. A GA is based on evolution of individuals, where individuals
carry genes that are unique and represent them; a set of individuals
form a population. For every generation there is a population with
different individuals. The individuals best set for their environment are
more likely to become parents, and their child can carry their best
genes. The GA developed in this study uses each weight (C, w1, w2, w3)
in the formula (Eq. (4)) as a gene, and each set of weights composes an
individual. A set of solutions (individuals) are ranked for every gen-
eration using a fitness function, which gives a score for each individual,
to select which are the best individuals. Fig. 1 shows the definition of
the population for this study.

A GA can be separated in three steps: Initialization, Selection and
Genetic operators. At the Initialization step (Fig. 2), a population of
possible solutions is generated through small variations (mutations) on
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a possible first individual, selected by the human operator. The muta-
tion step is similar to the mutation process in the theory of evolution,
where a new individual is created by small alterations of the genes of a
parent individual. The algorithm that generates this mutation in the GA
is exemplified on Eqs. (5) and (6), where individual A is the original
solution, mutation is a set of random values β γ( , ϑ, , ϰ) to be randomly
added to the original genes, and individual B is the generated solution
from mutation.

= =Individual A CA w A w A w A mutation β γ( , 1 , 2 , 3 ); ( , ϑ, , ϰ) (5)

= +

= + + + +

Individual B Individual A mutation A
CA β w A w A γ w A( , 1 ϑ, 2 , 3 ϰ) (6)

Each successive population generated is selected through a fitness-
based process, where a fitness function qualifies each single individual
with a score. In this case, the fitness function is the mean error between
the NDVI data and vNDVI data created by each individual (Eq. (7)). The

score (Eq. (8)) is calculated as the inverse of the fitness function, and is
used to create a rank, and selects the best individuals of the population
to continue to either advance to the next generation, create through
genetic operation new individuals (as parents), or to be discarded.
Fig. 3 shows the work flow for the selection step of the GA, where the
population is organized by score to be used on the next step.

= −Fitness function Mean NDVI vNDVI( ) (7)

=Score Fitness function1/ (8)

After selecting the best individuals of a population, a new genera-
tion of individuals have to be created from these to form a new sub-
sequent population. This step of genetic operators can be separated
into: elitism, crossover and mutation. The elitism stage is where the top
individuals of the population are selected to continue as they are for the
next generation. The crossover stage is similar to the breeding on the
theory of evolution, where two parents are mated to create a child as a

Fig. 1. An example of population for the GA developed, where each individual is a set of different genes.

Fig. 2. Work flow of the initialization step on the genetic algorithm.
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combination of their genes. Fig. 4 shows the workflow of the crossover
stage and how the child individuals are generated.

After the crossover, the remaining population is complemented by
taking both the parents and children individuals and adding a mutation
factor. Fig. 5 presents the workflow of the genetic operators stage,
where a new population is generated to go through a new generation of
the algorithm.

The algorithm ends using a termination criteria determined by:
stagnation, objective found, or number of generations. The first one
occurs when for a number of generations the best solution is the same,
assuming that this is a maximum score. When setting the score function,

the human operator can determine a value that if met will end the al-
gorithm, and that is the situation where the objective is found. It is also
possible to set a maximum number of generations to end the GA. At the

Fig. 3. Workflow of the selection step.

Fig. 4. Crossover stage, where a combination of two individuals genes create
two new individuals.

Fig. 5. Workflow of the genetic operators step where a new population is created.

Fig. 6. Work flow of the developed genetic algorithm.
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end, the function with the best score is selected as the optimal solution.
Fig. 6 presents the workflow of the developed GA.

Since the UAV collected data is normally large (in this study over
500.000 values), to validate the solution the data was separated in 90%
for GA training, and the other 10% for testing and validation. Using Eq.
(4) as the objective function for the GA, where C is the camera coeffi-
cient and the fitness function is the absolute difference between the
vNDVI and NDVI (Eq. (7)), the GA generated the weights as such to best
optimize the function. To validate the proposed function, the value of
the NDVI should be compared with the vNDVI in different conditions
and plants (crops).

2.3. Experimental sites

To evaluate the proposed methodology and new index (vNDVI), the
vNDVI must be tested and compared with the NDVI on different ve-
getation. Hence, three crops were selected as a case study: citrus, grapes
and sugarcane. Three citrus orchards (groves) were selected to be used
in this study, located at the Southwest Florida Research Center -
University of Florida (SWFREC-UF), in Immokalee, FL, USA. For the
citrus case, each tree was considered an individual in the GA. Table 1
presents information for each studied citrus field (grove).

The commercial vineyard (Lakeridge Winery & Vineyard) selected
for this study, is located in Clermont, FL, USA. The field has an area of
4.73 ha (11.7 acres) containing Muscadine grape of Carlos variety. It
contains 61 rows with vine spacing of 3.05 m × 6.1 m. The RGB and
NDVI values were collected from each row (each vineyard row is an
individual in the GA).

The sugarcane site is located in Clewiston, FL, USA and includes
stage II and stage IV trials of sugarcane breeding programs (to evaluate
new clones for disease resistance and higher yield). The sugarcanes
were planted on November 2018, separated in 46 plots (stage II) and 12
clones in 6 replications (stage IV). The plot length was 10.7 m with
1.8 m separation between the tiers. Since some of the plots were too
small on the orthomosaic, data were collected using several plots as one
individual to gather both RGB and NDVI information.

2.4. UAV sensing systems

Two quadcopter UAVs (Matrice 210 and Phantom 4 Pro+, DJI,
Shenzehen, China) and one hexacopter UAV (Matrice 600 Pro, DJI,
Shenzehen, China) were used for image acquisition. For the UAV flight
planning and mission control, the Pix4DCapture (Pix4D S.A., Prilly,
Switzerland) software app was used on an iPad (Apple, Cupertino, CA,
USA) connected to the remote controller of the UAVs.

Four sensing systems were used and evaluated: (i) an RGB (red,
green and blue) camera (Zenmuse X5S, DJI, WA, USA), attached to the
Matrice 210; (ii) an RGB camera (Phantom 4 Pro + camera, DJI, WA
USA), attached to the Phantom 4 Pro+; (iii) a multispectral camera
(RedEdge-M, MicaSense, WA, USA) with five imaging sensors in blue
(465–485 nm), green (550–570 nm), red (663–673 nm), red edge
(712–722 nm), and near-infrared (820–1000 nm); and (iv) a Pika L 2.4
hyperspectral camera (Resonon, Bozeman, MT), attached to the Matrice
600 Pro. The hyperspectral camera covers a 400–1000 nm range di-
vided in 150 bands. Table 2 presents the specifications of all the sensing
systems utilized in this study. Each sensing system is equipped with a

GPS sensor to georeference each picture/data taken with its latitude
and longitude.

The hyperspectral camera, Pika L 2.4 (Resonon, Bozeman, MT), uses
a 17 mm Focal Length lens, field of view (FOV) of 17.6 degrees, and
instantaneous field of view (IFOV) of 0.71 mrad. The camera has access
to an inertial measurement unit IMU (DJI, Shenzehen, China) for the
multi-rotor aircraft flight control, recording the sensor position and
orientation.

3. Data collection

3.1. RGB data collection

RGB data were collected using both quadcopter UAVs (Matrice 210,
and Phantom 4 Pro+); the Matrice 210 was equipped with the Zenmuse
X5S camera, and the Phantom 4 Pro+ with the Phantom 4 camera. A
front overlap of 85% and a side overlap of 70% was set directly on the
Pix4DMapper app. Data were collected at 122 m (400 ft) above the
ground. The data were processed using the Pix4DMapper software
(Pix4D S.A., Prilly, Switzerland) to stitch the collected UAV images into
aerial maps. A 2,052 × 3,054 pixels (full resolution) map was gener-
ated for each of the following bands: red (R), green (G) and blue (B).
The ground resolution was 1.5 cm. The RGB map was acquired from the
Pix4DMapper processing mosaic.

3.2. Multispectral data collection

Multispectral data were collected using the DJI Matrice 210 quad-
copter equipped with the Micasense RedEdge-M. The multispectral
camera has its own software that works separately and can be config-
ured using a wifi module accessing an IP address with the iPad. The
camera is triggered also by the Micasense RedEdge-M software. For the
multispectral data collection, an 80% for both front overlap and side
overlap was used. Data were collected at 122 m (400 ft) above the
ground. A calibrated reflection panel (CRP) designed specifically for
this multispectral camera was used before and after the flight mission to
provide radiometric calibration in order to compensate for sensor sen-
sitivity, lighting, and atmospheric conditions.

The data were processed using the Pix4DMapper software (Pix4D
S.A., Prilly, Switzerland) to stitch the collected UAV images into aerial
maps. A 2,954 × 5,000 pixels (full-resolution) map was generated for
each of the following bands: red (R), green (G), blue (B), red edge (RE)
and near-infrared (NIR). The ground resolution for the multispectral
camera was 5 cm. Additionally, an NDVI map was generated using a
Python script.

3.3. Hyperspectral data collection

Hyperspectral data were collected using the DJI Matrice 600
equipped with the hyperspectral camera Pika L 2.4. The hyperspectral
camera also has its own software and works separately from Pix4D. A
front overlap of 85% and side overlap of 70% were used. Data were
collected at an altitude of 60.96 m (200 ft) above the ground. A white
calibration tarp was placed in the region of data collection to be used to
calibrate the hyperspectral data collected.

The hyperspectral data were calibrated and analyzed using the
Spectronon software (Spectronon Pro, Resonon, Bozeman, MT). The
Georectification and Radiometric corrections were performed using the
Spectronon Pro software, to get the GPS/IMU and radiometric data. The
regions of interest (RoI) were manually selected based on each interest
tree position and the hyperspectral wavelengths data were collected to
be used as a reference data for the multispectral camera.

3.4. Citrus tree detection

To correct the GPS errors and correctly georeference the developed

Table 1
Citrus orchards characteristics (*FDT: Flying Dragon Trifoliar).

Grove A Grove B Grove C

Tree variety Hamlin/Valencia Valencia Valencia/Swingle
Tree rootstock US897/US942 US802/

X639 FDT*/Swingle
Swingle Swingle

Tree spacing 2.54 × 6.70 m 4.45 × 6.40 m 4.45 × 5.80 m
Number of trees 465 972 270
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orthomosaic maps generated from different sensing systems (e.g., RGB
and multispectral cameras) with different resolutions and sizes, ground
control points (GCPs), which are ground markers, were utilized. Using
this technique, each tree position was corrected in all orthomosaic
maps.

An algorithm was developed in Python, based on Ampatzidis and
Partel (2019), to detect and geo-locate citrus trees and measure each
tree’s canopy area. This algorithm utilizes a Faster-RCNN (Ren et al.,
2015), instead of a YOLO (Redmon and Farhadi, 2018) used by
Ampatzidis and Partel (2019). The Faster-RCNN was trained on 1,229
cropped images of other citrus orchards and blocks. The Faster R-CNN
based algorithm has two main steps; a neural network (Region Proposal
Network -RPN): (a) proposes for each candidate object in the image a
bounding-box that contains said object(s) (e.g. a tree); and (b) extracts
features using region of interest (ROI) from each candidate bounding-
box and performs the final classification.

For each tree bounding box, the average of red, green and blue from
the RGB images were retrieved. Using the georeference created by the
ground control points inside the images, the average value of the NDVI
was also calculated. Table 3 presents the number of trees and the
number of detected trees, by the developed algorithm, for each grove.
Fig. 7 shows an example of the resulting bounding-boxes for each tree
on part of grove A.

On all citrus orchards (groves), the algorithm detected and counted
1,641 trees, and for each individual tree, using the bounding box from
the detection, the average values of red, green and blue were collected
and stored. With the references of each GCP from the images, the same
bounding boxes are used on the NDVI map (generated by the multi-
spectral camera) to collect their average NDVI values.

4. Experimental design

Three experiments were developed in this study to evaluate the
proposed vNDVI. Fig. 8 summarizes all three experiments.

4.1. Experiment I

The experiment I evaluates the accuracy of the multispectral camera
to produce an NDVI map. In this experiment, the NDVI map created by
the multispectral camera was compared with the NDVI map generated
by the hyperspectral camera, which has a higher resolution on the
spectrum and can be used as a ground truth for the NDVI values. This
“hyperspectral NDVI” map was compared with an NDVI map developed
by the multispectral camera in a citrus field.

To ensure the same weather conditions, both flights were done one
after the other with a few minutes in between them. On grove A, 100

citrus trees were selected to retrieve their average NDVI value from
both NDVI maps generated by the hyperspectral and multispectral
cameras. In the “hyperspectral NDVI” map, each tree was manually
selected using the Spectronon software. In the “multispectral NDVI”
map, a manual tool was developed to select an area of interest (in-
dividual trees) and retrieve the NDVI information (Python script). With

Table 2
Specifications of the UAV-based sensing systems.

Sensing systems Resolution Pixel resolution at 122 m (400 ft)
flight

Focal
Length

Horizontal FOV Vertical FOV Diagonal FOV

RGB Zenmuse X5S 5,280 × 3,956 pixels (21 megapixels) 2.2 × 1.9 cm 15 mm 60.51° 35.83° 58.1°
RGB Phantom 4 Pro+ 5,472 × 3,648 pixels (19.96

megapixels)
1.2 × 1.2 cm 24 mm 30.75° 20.77° 36.57°

Multispectral RedEdge-M 1,280 × 960 pixels (1.2 megapixels) 7.5 × 9.9 cm 5.4 mm 47.9° 36.9° 58.1°
Hyperspectral Pika L 2.4 Spectral Res: 2.1 nm 17 mm FOV : 17.6 deg

IFOV: 0.71 mrad

Table 3
Citrus orchards (fields) detections by the Faster R-CNN.

Grove A Grove B Grove C Total

Number of trees 465 972 270 1707
Tree detection by the Faster-RCNN 463 921 257 1641
Precision of detection 99.57% 94.75% 95.18% 96.13%

Fig. 7. Example of Faster R-CNN tree detection on part of Grove A.

Fig. 8. Experimental design.
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this tool each tree average NDVI value was calculated.
To collect the NDVI data for all 1,641 trees (all groves), a metho-

dology to detect trees in the RGB orthomosaic was used, and a geor-
eference to the NDVI map was performed. Since only the multispectral
camera (and not the hyperspectral) has sensors to georeference each
image and can generate an orthomosaic for NDVI to be used, the
multispectral camera was chosen over the hyperspectral to be used in
the following experiments of this study.

4.2. Experiment II

In experiment II, the vNDVI equation was generated utilizing the
multispectral data from all fields (three citrus groves, one vineyard and
one sugarcane field). The RGB data from the multispectral camera were
used as input to the proposed GA, with the NDVI values as the objective
output, creating the vNDVI formula (Eq. (4)). Fig. 9 presents the process
of experiment II.

4.3. Experiment III

In experiment III, the vNDVI was compared with the NDVI in three
case studies (crops): citrus, vineyard and sugarcane. In this experiment,
the vNDVI was calculated by the use of two uncalibrated RGB cameras
(the Zenmuse X5S and the Phantom 4 Pro+), and the NDVI by the use
of the multispectral camera RedEdge-M. The objective of this experi-
ment was to define the camera coefficient for an uncalibrated RGB
camera, as well as validate the vNDVI for multiple crops.

To collect data of each individual tree on the citrus case study, for
each RGB orthomosaic, the developed Faster-RCNN detected the ca-
nopy for each tree and saved the information of both location and
average pixel values of RGB for the bounding box. The location for each
tree was then used to collect the same values for each bounding box on
the multispectral map (for comparison purposes). With both values, the
equation developed in experiment 2 was evaluated by comparing the
NDVI with the proposed vNDVI. The difference in the values gave the
camera coefficient for these uncalibrated cameras.

For the vineyard case study, each row of vines was selected manu-
ally and the average of the NDVI and vNDVI were compared for each
individual row. A total of 50 rows were selected in this study.

For the sugarcane case study, each small field was selected as an
individual, where 20 groups of plots were selected to be compared.
Fig. 10 shows an example of the orthomosaic of the three crops.

4.4. Evaluation metrics

To evaluate the proposed vNDVI developed in this study, the fol-
lowing evaluation metrics were used: coefficient of determination (R2),
mean absolute error (MAE), and mean percentage error (MPE). The
coefficient of determination is the squared Pearson correlation coeffi-
cient between the NDVI and the vNDVI as a measurement of the linear
association between the two values; MAE is the mean of the absolute
difference between NDVI and vNDVI; MPE is the mean error between
the NDVI and vNDVI measurements (Eq. (9)).

= −Error Absolute NDVI vNDVI NDVI( )/ (9)

5. Results and discussion

5.1. Experiment I

After flying on grove A with both the hyperspectral and multi-
spectral cameras (in similar weather conditions), the NDVI values of
100 trees were collected and compared (for both sensing systems). For
visualization purposes, Fig. 11 shows an example of comparison be-
tween the data of 35 randomly selected trees. It can be seen that the
multispectral camera underestimates the value of the NDVI compared
to the hyperspectral camera.

On all 100 trees, the multispectral data presented a MAE of 0.05,
with a MPE of 5.73%, which is usually by underestimating the value
measured by the hyperspectral data. This low error shows that the use
of the multispectral camera is appropriate for this study.

5.2. Experiment II

The multispectral data of all three study cases were used to create
the formula for the vNDVI. For each map file, a sampling of every 4th
pixel on the image was selected in order to reduce the size of the da-
taset, and the values of red, green, blue and NDVI were collected and
stored. For all the maps used, over 1,000,000 pixel values were col-
lected, containing vegetation, buildings, roads and lakes. These values
were used in the GA to define the weights for the vNDVI (Eq. (4)), as
presented in Eq. (10). For all of the values collected, 90% were used for
training with cross-validation and 10% used for testing.

= ∗ ∗ ∗
− −vNDVI red green blue0.5268 ( )0.1294 0.3389 0.3118 (10)

Even though the same camera was used, the camera coefficient for
Eq. (10) is different than 1 as the RGB sensors are not the same as the

Fig. 9. Workflow of Experiment II.
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multispectral sensors in the camera. Fig. 12a presents the comparison
between the pixel value for NDVI measured by the multispectral camera
and the vNDVI created by the GA (example of 39 randomly selected
pixels), while Fig. 12b presents the percentage error for each mea-
surement.

The values for vNDVI from the testing dataset in this experiment
presented a MAE of 0.042, with a MPE of 7.51%. The larger errors
found on soil pixels, where the NDVI values were low (and not very
accurate). Since the vNDVI formula is designed for vegetation, it get
larger errors in soil. The R2 value found using the Pearson correlation
was 0.85 (Fig. 13), which indicates a good correlation between both
measurement methods.

5.3. Experiment III

5.3.1. Citrus case
To get the RGB values of each tree in the bounding box (tree de-

tections generated by the Faster R-CNN), a smaller box is used in the
center of the bounding box to ensure that mostly pixels from the tree
canopy (and not soil) were selected. The vNDVI was calculated from the
RGB maps using the formula found in experiment II (Eq. (10)), and
compared with the NDVI (measured by a multispectral camera) to de-
fine the camera coefficient using Eq. (5). The camera coefficient for the
uncalibrated RGB cameras used was found to be:

= ∗ ∗ =
− −C NDVI red green blue/( ) 0.58470.1294 0.3389 0.3118 (11)

Fig. 14a presents an example of the comparison between the NDVI
(measured by a multispectral camera) and vNDVI (measured by an RGB
camera) for 35 randomly selected citrus trees, while Fig. 14b shows the
error in percentage between both measurements.

The vNDVI for an uncalibrated RGB camera resulted in a MAE of
0.021, with a MPE for the estimation of 2.75% (compared to the NDVI).
The R2 between both measurements was 0.79 (Fig. 15a). For the same
detections, the correlation between VARI and NDVI was also retrieved
to compare the accuracy of the VARI in predicting NDVI values. VARI
was not developed to predict NDVI values, but both VARI and NDVI
were created to evaluate crop health (as crop health indices), and
hence, it is expected that both indices will have a good correlation.
Fig. 15b shows the VARI and NDVI correlation, which found a R2 of
0.65, much lower than the vNDVI (R2 of 0.79) (Fig. 15a). Since NDVI is
mostly used as a crop health index, a higher correlation shows that the
vNDVI is better suited than VARI for that same purpose.

Fig. 16 presents a comparison of the NDVI, VARI, and vNDVI maps
for the grove A (VARI and vNDVI maps created by using the Phantom 4
Pro + RGB camera).

From Fig. 16, it can be seen that the values for the trees in the NDVI
and vNDVI are similar. Fig. 16 also shows that while both are created

Fig. 10. Orthomosaic maps of: (a) citrus grove, (b) vineyard, (c) sugarcane plots.

Fig. 11. Comparison between Hyperspectral NDVI and Multispectral NDVI in
35 randomly selected trees.
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from RGB images, the vNDVI map has a greater difference between
vegetation and soil than the VARI map, which makes it easier to use as a
vegetation fraction index as well.

5.3.2. Vineyard case study
Fifty rows of plants were used to compare the vNDVI (measured by

an RGB camera) and NDVI (measured by a multispectral camera). The
MPE was found as 11.57%, with a MAE of 0.092. Fig. 17a presents an
example of the comparison between 30 randomly selected measure-
ments (vine rows) and Fig. 17b the percentage error for each row.

It is important to note that in this case, the vNDVI underestimated
the values in every row, which might be from the manual row selection
procedure, which includes a human error (e.g., by not selecting the
exact same area and/or by selecting more soil pixels which have lower
values).

Fig. 18 presents the Pearson correlations between the vNDVI and
NDVI, and between the VARI and NDVI. It can be seen that the vNDVI
has a higher correlation (0.69) than the VARI (0.38).

5.3.3. Sugarcane case study
Twenty group of plots of sugarcane were selected to compare the

Fig. 12. (a) Comparison between 39 randomly selected pixels containing vegetation, soil and water for vNDVI (measured by an RGB camera) and NDVI (measured by
a multispectral camera); (b) percentage error for each measurement.

Fig. 13. Pearson correlation between vNDVI (measured by an RGB camera) and
NDVI (measured by a multispectral camera) for each pixel value used from the
three citrus groves maps.

Fig. 14. Citrus case study: (a) Comparison between the NDVI (measured by a multispectral camera) and vNDVI (measured by an RGB camera) for an RGB un-
calibrated camera (example of 35 randomly selected trees); and (b) the percentage error.
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vNDVI with the NDVI. The MPE found was of 8.07%, with a MAE of
0.052. Fig. 19a shows the comparison between the 20 measurements
(groups of plots), and Fig. 19b presents the percentage error for each
plot.

In this case study, the vNDVI overestimated the value of each su-
garcane group of plots. It can also be seen that at the worst occasions,
the percentage error was around 14%, which is still a good estimation
for the NDVI. Fig. 20a presents the Pearson correlation between the
NDVI and the vNDVI, which has a R2 of 0.82, while Fig. 20b shows the
correlation of NDVI and VARI with a R2 of 0.77.

In all three crops, the vNDVI achieved a MPE of 6.89% and a MAE of
0.052, compared to the NDVI.

Much like the NDVI and other indexes, the vNDVI has some lim-
itations as well, with the first being the effects of the weather and
sunlight in the measurements. In different weather conditions the index
could generate different measurements for the same plant. The second
important limitation is that the vNDVI formula is not normalized, and
as such could generate values higher than one on non-vegetation areas.
On such occasion it is best to treat every value higher than one as one.

Fig. 15. Pearson correlation for the citrus case study between the: (a) NDVI and vNDVI, and (b) NDVI and VARI.

Fig. 16. Citrus case study: (a) NDVI, (b) VARI and (c) vNDVI for the citrus
grove A.

Fig. 17. Vineyard case study: (a) Comparison between vNDVI and NDVI for each vine row, (b) MPE of for each row.

L. Costa, et al. Computers and Electronics in Agriculture 172 (2020) 105334

10



Fig. 18. Pearson correlation for the vineyard case study between the: (a) NDVI and vNDVI, and (b) NDVI and VARI.

Fig. 19. Sugarcane case study: (a) Comparison between vNDVI and NDVI for each sugarcane plot, (b) MPE of the estimation for each plot.

Fig. 20. Pearson correlation for the sugarcane case study between the: (a) NDVI and vNDVI, and (b) NDVI and VARI.
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6. Conclusion

Vegetation indices and UAVs provide a rapid and low cost tool to
assess vegetation information on arable and fruit trees crops. To gen-
erate most VIs, the use of relatively expensive and low spatial resolution
multispectral or hyperspectral cameras is required. RGB cameras on the
other hand provide a low-cost alternative (usually with a higher spatial
resolution), but are limited on the data they can collect. In this study, a
new visible NDVI (vNDVI) was developed, utilizing a genetic algorithm,
to estimate NDVI values from RGB maps; a methodology to calibrate the
vNDVI function for any RGB camera has been presented. The proposed
vNDVI (measured from RGB cameras) accurately predicted NDVI values
(measured by multispectral cameras) in three crops (citrus, grapes, and
sugarcane) with an overall MPE of 6.89% and a MAE of 0.052. The
vNDVI could be used as an alternative to multiple RGB-based VIs, with
a better correlation to NDVI, and hence provide a more accurate crop
health index. Scientists and developers could use and validate the
proposed vNDVI in other crops or use the proposed GA-based metho-
dology to develop similar VIs. The vNDVI can be specifically used with
satellite data, where the multispectral images usually contain low
spatial resolution data, compared to the high spatial and temporal re-
solution RBG data.
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