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In this study hyperspectral imaging (380e1020 nm) and machine learning were utilised to

develop a technique for detecting different disease development stages (asymptomatic,

early, intermediate, and late disease stage) of powdery mildew (PM) in squash. Data were

collected in the laboratory as well as in the field using an unmanned aerial vehicle (UAV).

Radial basis function (RBF) was used to discriminate between healthy and diseased plants,

and to classify the severity level (disease stage) of a plant; the most significant bands to

differentiate between healthy and different stages of disease development were selected

(388 nm, 591 nm, 646 nm, 975 nm, and 1012 nm). Furthermore, 29 spectral vegetation

indices (VIs) were tested and evaluated for their ability to detect and classify healthy and

PM-infected plants; the M value was used to evaluate the VIs. The water index (WI) and the

photochemical reflectance index (PRI) were able to accurately detect and classify PM in

asymptomatic, early, and late development stages under laboratory conditions. Under field

conditions (UAV-based), the spectral ratio of 761 (SR761) accurately detected PM in early

stages, and the chlorophyll index green (CI green), the normalised difference of 750/705 (ND

750/705), the green normalised difference vegetation index (GNDVI), and the spectral ratio

of 850 (SR850) in late stages. The classification results, by using RBF, in laboratory condi-

tions for the asymptomatic and late stage was 82% and 99% respectively, while in field

conditions it was 89% and 96% in early and late disease development stages, respectively.

© 2020 IAgrE. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Summer squash (Cucurbita pepo) is an important vegetable

crop and economically valuable in many areas. However,

squash and other members of Cucurbitaceae are highly sus-

ceptible to the powdery mildew disease caused by the fungus

Podosphaera xanthii (Cohen, Hanan, & Paris, 2003). Powdery

mildew (PM) is a common disease on squash in the United

States and throughout theworld. The PM disease can decrease

yield potential and reduce fruit quality if it is not controlled

during the early infection phases (McGrath, Fox, & Menasha,

2009). The main symptom of PM consists of white powdery

spots or patches, usually on the leaves. Diagnosing PM in early

infection stages is problematic, due to the presence of PM

symptoms on lower, more mature leaves, which are often

covered by other leaves in the plant’s canopy that makes it

difficult to detect. It is crucial to identify PM early, since the

disease spreads rapidly and the lesions increase in size,

developing a dusty white or gray coating. The ideal environ-

ment for PM to infect is humid weather, high density planting

and shade, but dryer conditions without rain or leaf wetness

favor inoculum production and spread (Reuveni, 1974, pp.

25e33). The PM causes leaves, stems, and flowers to become

distorted and stunted. Spores are readily wind-dispersed over

long distances (Reuveni, 1974, pp. 25e33).

Early disease detection is necessary for optimal PM man-

agement to control and prevent the spread of the disease

throughout the field. In addition to early detection, two main

issues have to be addressed for an efficient PMmanagement: i)

determining the progression of the disease, and ii) deter-

mining the location and severity of the disease of the

outbreak. Frequent spray applications with large amounts of

chemicals such as fungicides contribute to the accumulation

of chemical waste in soil and water, increase environmental

pollution and contamination of edible products (Itoh, 2014;

Lapushkina, Andreeva, & Slynko, 2002). Frequent dosages of

some pesticides would lead to selection and an increase in

pesticide resistance in pest and pathogen populations.

Spraying large amounts of pesticides will damage the

ecosystem and potentially harm global health of plants, ani-

mals, and human beings (Brisbois, Harris, & Spiegel, 2018;

Spurgeon et al., 2016). Smart and precision agriculture tech-

nologies could provide a long term solution by early detecting

pest and plant diseases and by developing target-based

spraying technologies (Partel, Kakarla, & Ampatzidis, 2019).

For example, Faical et al. (2017) developed a dynamic

computer-based method that was able to autonomously

adjust the flying rules of a spraying unmanned aerial vehicle

(UAV) based on changes in weather conditions for more ac-

curate pesticide deposition on the target fields. Xiongkui,

Aijun, and Jianli (2011) developed a precision orchard

sprayer utilising infrared sensing and electrostatic techniques

that was able to save more than 50%e75% of pesticides. For

the better utilisation of precision spraying technologies, an

early disease detection system is needed. Detecting the dis-

ease at an early stage allows growers to take appropriate

management steps (i.e. fungicide application), mitigate losses

due to the disease, and increase profitability. Visible and near

infrared (NIR) spectroscopy is one of themost commonly used
nondestructive methods for detecting plant diseases in labo-

ratory and field (Ampatzidis, De Bellis, & Luvisi, 2017; Luvisi,

Ampatzidis, & De Bellis, 2016). Xu, Ying, Fu, and Zhu (2007)

monitored five disease stages of leafminer damage in to-

mato leaves by using NIR spectroscopy (800e2500 nm) and

found that the most sensitive bands were located at 1450 and

1900 nm. Al-Ahmadi et al. (2018) utilised a NIR technique

(900e2400 nm) to monitor soybean plants, which were treated

with toxins produced by the charcoal rot pathogen. The re-

sults were promising in developing tools to screen soybean

varieties tolerant to this disease and for detecting other abiotic

factors. Couture et al. (2018) developed a technique to identify

the potato virus Y (PVY) in different potato varieties and to

monitor the physiological effect of the virus in potato plants.

Atanassova, Nikolov, Valchev, and Stoyka Yorgov (2019) used

a spectrometer (USB 4000, Ocean Optics, Largo, Florida, USA)

(450e1100 nm) to measure the spectral reflectance of cu-

cumber leaves infected with powdery mildew at 3, 5, 7, 9, 11

and 13 days after infection. Several spectral vegetation indices

(VIs) (e.g., normalised difference vegetation index, red edge

index, photochemical reflectance index, water band index,

carotenoid reflectance index) were applied successfully to

differentiate between infected plants and healthy plants.

Abdulridha, Ehsani, and de Castro (2016) utilised a spectror-

adiometric hyperspectral device (350e2500 nm) to detect

laurel wilt disease in avocados. Abdulridha, Ehsani, Abd-

Elrahman, and Ampatzidis (2019c) were able to select the

best wavelengths to detect and differentiate laurel wilt and

phytophthora root rot, two diseases that cause similar

symptoms in early stages. Salinity damage to plants, nitrogen

and iron deficiencies in crops were also detected. Several

neural network classification methods were applied (multi-

layer perceptron, radial basis function, tree decision, and

stepwise discriminant analysis) and the classification rate

between healthy and non-healthy plants was more than 90%.

Recently, UAV-based spectral techniques have been utilised

for high throughput plant phenotyping (Ampatzidis & Partel,

2019; Ampatzidis, Partel, & Costa, 2020) and disease detection

(Abdulridha, Ampatzidis, Kakarla, & Roberts, 2019a; Hariharan,

Fuller, Ampatzidis, Abdulridha, & Lerwill, 2019) in specialty

crops. In-field spectral measurements are affected by weather

and light conditions (among other factors), in contrast to well-

controlled laboratory conditions. Johansen et al. (2019) utilised

UAVs to investigate the response of wild tomato plants in

relation to salt stress for use in breeding programs to improve

salt tolerance in tomato. Martinelli et al. (2015) concluded that

UAV-based multispectral or hyperspectral techniques can be

used for a more sustainable production system, avoiding

expensive use of agrochemicals in yield protection. Tripodi,

Massa, Venezia, and Cardi (2018) investigated the benefits of

using an UAV-based imaging system to increase the ability of

collecting and analysing large set of data in the field in order to

precisely evaluate plant phenotypes.

Any disease or stress that affect a plant’s chlorophyll

concentration, water content, and damage the plant cells

would affect the spectral reflectance ratio, and thus, will affect

VIs value as well (Semeraro et al., 2019; Zheng et al., 2019).

Therefore, it is expected that the values of specific VIs will

vary based on disease severity. Vegetation indices combined

with image analysis and machine learning could detect
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variations in vegetation coverage. Abdulridha, Batuman, and

Ampatzidis (2019b) utilised VIs and UAV-based hyper-

spectral imaging to detect citrus canker and differentiate be-

tween healthy and non-healthy citrus trees. The water index

(WI) and the modified chlorophyll absorption in reflectance

index (ARI and TCARI 1) accurately detected canker to a great

extent in laboratory and in orchard conditions, respectively.

Candiago, Remondino, De Giglio, Dubbini, and Gattelli (2015)

analysed spectral reflectance of vineyards and tomato crops

using a UAV-based multispectral camera to estimate the

normalised difference vegetation index (NDVI), the green

normalised difference vegetation index (GNDVI), and the soil

adjusted vegetation index (SAVI) in order to evaluate the

vegetation vigor for each crop. For accurate disease detection,

it is critical to identify the most significant wavelengths that

can be used to not only detect but also distinguish the disease

(and its stages) from other diseases and abiotic factors.

The aim of this study was to: i) detect PM on squash plants

in the laboratory and in the field (UAV-based) using hyper-

spectral imaging; ii) monitor plants before detection of PM and

after natural infection in both environments (laboratory and

field); and iii) obtain the most significant wavelengths and VIs

for disease detection and classification.
2. Materials and methods

2.1. Squash plants preparation and inoculation

The experiments were conducted at the Southwest Florida

Research and Education Center in Immokalee, FL, USA.

Guidelines established by the University of Florida/IFAS were

followed for land preparation, fertility, irrigation, weed man-

agement, and insect control. Beds were 0.81 m wide with

3.66 m centers covered with black polyethylene film. Yellow

crookneck squash seeds were direct seeded on 9 March 2019

into the soil (Immokalee fine sand) in a complete randomised

block treatment design with four replicates. Each plot con-

sisted of ten plants spaced 0.91 m apart within an 8.23 m row

with 3.05 m between each plot. The plants were infected

naturally by PM. Plants were sprayed with fungicides con-

taining active ingredients specific only to oomycetes to control

downy mildew and insecticides to control insect pests. Initial

detection of powdery mildew was performed with a micro-

scope in the lab to confirm powdery mildew infection on

plants in the field. Disease progress was monitored over time

throughout the field trial (data not shown) from low disease

severity (disease severity is defined as the percentage of

symptomatic plant tissue) to high severity with the scale

ranging from 0 to 100%.

2.2. Data collection

Squash leaves were collected prior to detection of any symp-

toms of PM. For laboratory measurements, 10 leaves were

regularly collected to monitor the development of the disease

after the detection of powdery mildew infection on plants (on

April 8, 12, 15, 17, 19, 22, May 1 2019) (Fig. 1a, b and c, and Table

1). UAV imagery was collected on four dates (the first flight

took place before the manifestation of the symptoms on April
8th, the second after the first onset on April 15th, the third on

April 22nd and the last on May 1st) (Fig. 1d, e and f, and Table

1). The first leaf collection did not show any symptoms, and

then the disease severity gradually increased over time.

2.3. Spectral data processing under laboratory
conditions

Spectral data were collected using a benchtop hyperspectral

imaging system, Pika L 2.4 (Resonon Inc., Bozeman MT, USA)

(Fig. 2). The Pika L 2.4 was equipped with a 23 mm lens which

has a spectral range of 380e1030 nm, 281 spectral channels,

15.3� field of view and a spectral resolution of 2.1 nm. The

same hyperspectral camera was utilised in laboratory and

field conditions after changing lenses, which covered the

same spectral range. Resonon’s hyperspectral imagers (RHI),

known as push-broom imagers, are line-scan imagers. The

system is made up of a linear stage assembly, which is shifted

by a stagemotor. Controlled broadband halogen lighting bulbs

were set up above the linear stage to produce ideal situations

for carrying out the spectral scans. The hyperspectral imaging

systemwas arranged in a way that the lens’ distance from the

linear stage was 0.5 m. The lights were positioned at the same

level as the lens on a parallel plane. All scans were performed

using the Spectronon Pro (Resonon Inc., Bozeman MT, USA)

software, which was connected to the camera system using a

USB cable. Before performing the scans of the leaves, dark

current noise was removed using the software. Then, the

camera was calibrated by using a white tile (reflectance

reference), provided by the manufacturer, placed under the

same conditions as used for performing scans. The selection

of the regions of interest (RoIs) (Fig. 1a, b & c) was done

manually and arbitrarily by picking six spectral scan regions

each from 10 leaves to prevent the occurrence of any bias. The

total spectral scans (RoIs) selected for each disease stage was

60. RoIs were selected in such a way that they included both

the affected and unaffected areas of leaf tissue. The pixel

number of each spectral scan selected was between 800 and

900 pixels. The average of 60 spectral scans was used to form

an overall spectral scan signature curve for each disease stage.

The Spectronon Pro software, which is a post-processing data

analysis software, was used to analyse the spectral data of

each leaf scan. Several areas containing the symptomatic and

non-symptomatic regions on the leaves were selected using

the selection tool and the spectrum was generated. For the

healthy and asymptomatic stages, several random spots on

leaves were selected, and the average of spectral reflectance

was calculated and used to form the spectral signature curves.

2.4. UAV spectral data processing in field conditions

The hyperspectral data in field conditions were collected by

using an UAV (Matrice 600 Pro, Hexacopter, DJI Inc., Shenzen,

China). The UAV-based imaging system included (Fig. 3): (i) a

Resonon Pika L 2.4 hyperspectral camera; (ii) a visible-NIR (V-

NIR) objective lenses for the Pika L camera with a focal length

of 17 mm, field of view (FOV) of 17.6� and an instantaneous

field of view (IFOV) of 0.71 mrad; (iii) a Global Navigation Sat-

ellite System (GNSS) (Tallysman 33-2710NM-00e3000, Tallys-

man Wireless Inc., Ontario, Canada)/Inertial Measurement

https://doi.org/10.1016/j.biosystemseng.2020.07.001
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Fig. 1 e Squash plants in different development stages of the powdery mildew disease. The indoor pictures with regions of

interest are: a) healthy leaf (prior to any disease detection in field), b) early symptoms (low disease severity), and c) late stage

(high disease severity). Outdoor data collection in different disease development stages are d) asymptomatic plants, e) initial

symptomatic stage (low disease severity), and f) the late PM symptomatic stage (high disease severity).

Table 1 e Hyperspectral data collection schedule for squash plants in the laboratory and field conditions.

Plant status and disease progress Category Collection date Spectral
collection- lab

Spectral
collection-UAV

Healthy plant H April 8, 2019 √ √
Asymptomatic disease stage PM1 April 12, 2019 √
Early symptoms/low disease severity PM2 April 15, 2019 √ √
Intermediate development stage PM3 April 17, 2019 √
Intermediate development stage PM4 April 19, 2019 √
Late development disease stage PM5 April 22, 2019 √ √
Very late development disease stage/high disease severity PM6 May 1, 2019 √ √
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Unit (IMU) (Ellipse N, SGB Systems S.A.S., France) flight control

system for multi-rotor aircraft to record sensor position and

orientation, and (iv) a Resonon hyperspectral data analysis

software (Spectronon Pro, Resonon, Bozeman, MT, USA)

which is capable of rectifying the GPS/IMU data using a

georectification plugin. The data was collected at 30 m above

the ground and at a speed rate of 1.5 m s�1. In the produced

map, the pixel size is a function of the working distance

(distance between the camera lens and the scanning stage/

field) and FOV. This value varies according to the flight pa-

rameters. In this study, it was around 35mmpixel�1. Gary tarp
at 36% band average reflectivity level (Group VIII Technolo-

gies, Provo, Utah, USA) was utilised to correct the data

reflectance from radiance. Radiometric calibration was per-

formed by using a calibrated integrating sphere. The manu-

facturer took 100 lines of hyperspectral data and built a

radiometric calibration file that contains a lookup table with

all combinations of integration times and framerates. This

data was used to convert raw camera data (digital number) to

physical units of radiance in micro flicks. The Pika L 2.4

camera is a “pushbroom” or line-scan type imager that pro-

duces a 2-D image, where every pixel in the image contains a

https://doi.org/10.1016/j.biosystemseng.2020.07.001
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Fig. 2 e Laboratory spectral measurements of squash

leaves using a benchtop hyperspectral imaging system.

Fig. 3 e a) An UAV-based imaging data collection with a hypers

Florida Research and Education Center, and b) aerial image sho

tarp.
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continuous reflectance spectrum. The RoIs were handpicked

for each plant, and several spectral scans were done to cover

the entire canopy. Each RoI contained four pixels, and four

RoIs were selected for each plant. The total sample size for

each disease development stage was 20 plants (Fig. 3b). The

RoIs were then transferred as a text file and processed using

the SPSS software (SPSS 13.0, Inc., Chicago; Microsoft Corp.,

Redmond, WA).

2.5. Vegetation indices (VIs)

The purpose of using VIs in this study is to evaluate their

capability on detecting and classifying PM-infected squash

plants. In this study, 29 VIs (Table 2) were selected based on

their ability to detect differences in plant’s concentration of

chlorophyll, plant water content, and leaf cell structure. These

factors are affected by PM disease (and its severity), and hence

the main purpose of this study is to detect the progression of

the PM, the proposed VIs could be able to detect these changes

and the PM development stages of low to high disease severity

progression.

2.6. Data analysis

TheM valuewas used to evaluate the selected VIs; theM value

divides the difference of mean of two categories (healthy and

infected plants) by the sum of the standard deviation (s) of the

two categories (equation (1)).

Mvalue¼
�
MeanHealthy �MeanInfected

�
�
sHealthy þ sInfected

� (1)

There were six disease stages in the laboratory setting, and

the M value was calculated to differentiate the results be-

tween each individual stage. The M value is generally higher

when the standard deviation is low, which leads to narrowing

the histogram of spectral reflectance, which leads to less

overlap (Kaufman & Remer, 1994). The M value is considered

as a significant discriminant between different VIs. As the

value of M value increases, less overlap and better reparability

is observed. Furthermore, the Tukey’s HSD test (a ¼ 0.01) was
pectral Resonon camera of a squash field at the Southwest

wing the regions of interest were selected and calibration

https://doi.org/10.1016/j.biosystemseng.2020.07.001
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Table 2 e Vegetation indices studied in this work to detect PM.

VIs Equations References

Ratio Analysis of reflectance

Spectral Chlorophyll-a

(RARSa)

RARSa ¼ R675
R700

Chappelle, Kim, and McMurtrey (1992)

Ratio Analysis of reflectance

Spectral Chlorophyll b

(RARSb)

RARSb ¼ R675
ðR700� R650Þ

Chappelle et al. (1992)

Ratio analysis of reflectance

spectra (RARSc)
RARSc ¼ R760

R500
Chappelle et al. (1992)

Pigment specific simple

ratio (PSSRa)
PSSRa ¼ R800

R680
Blackburn (1998)

Normalised difference

vegetation index 780

(NDVI 780)

NDVI780 ¼ R780� R670
R780þ R670

Raun et al. (2001)

Green NDVI (GNDVI)
GNDVI ¼ ðNIR850� G580Þ

ðNIR850þ G580Þ
Gitelson and Merzlyak (1996)

Photochemical Reflectance

Index (PRI)
PRI ¼ ðR532� R570Þ

ðR531þ R570Þ
Penuelas, Pinol, Ogaya, and Filella (1997b)

Simple Ratio Index (SR900)
SR900 ¼ R900

R680
Jordan (1969)

Water Index (WI)
WI ¼ R900

R970
Penuelas, Llusia, Pinol, and Filella (1997a)

Structure Insensitive

Pigment Index (SIPI)
SIPI ¼ ðR840� R450Þ

ðR840� R670Þ
Penuelas, Baret, and Filella (1995)

Normalised

phaeophytinization index

(NPQI)

NPQI ¼ ðR415� R435Þ
ðR415þ R435Þ

Barnes, Balaguer, Manrique, Elvira, and Davison (1992)

Normalised difference

vegetation index (NDVI

760)

NDVI761 ¼ ðR761� R450Þ
ðR761� R450Þ

Raun et al. (2001)

Normalised difference

vegetation index 850

(NDVI 850)

NDVI850 ¼ ðR850� R651Þ
ðR850þ R651Þ

Raun et al. (2001)

Simple Ratio Index (SR 760)
SR761 ¼ R761

R650
Jordan (1969)

Simple Ratio Index (SR 850)
SR850 ¼ ðR850Þ

ðR650Þ
Jordan (1969)

Triangle Vegetation Index

(TVI)

TVI ¼ 0.5[120a(R750-R550)-200(R670-R550)] Broge and Leblanc (2001)

Modified Triangular

Vegetation Index1 (MTVI

1)

MTVI 1 ¼ 1.2[1.2a(R800-R550)-2.5(R670-R550)] Haboudane, Miller, Pattey, Zarco-Tejada,

and Strachan (2004)

Modified Triangular

Vegetation Index2 (MTVI

2)

MTVI2 ¼ 1:5
½1:2ðR760� R580Þ � 2:5ðR650� R580Þ�

SQ
Haboudane et al. (2004)

Renormalised Difference

Vegetation Index (RDVI)
RDVI ¼ ðR760� R650Þ

ðR760þ R650Þ0:5
Roujean and Breon (1995)

Red-Edge Vegetation Stress

Index 1 (RVS 1)
RVSI1 ¼ ðR650þ Edge750Þ

2
� Edge733

Merton (1998)

Structure Insensitive

Pigment Index (SIPI)
SIPI ¼ ðR840� R450Þ

ðR840� R670Þ
Penuelas et al. (1995)

Transform chlorophyll

absorption in reflectance

index (TCARI)

TCARI ¼ 3[(R740-R651)-0.2(R740-R581) (R740/R651)] Haboudane, Miller, Tremblay, Zarco-Tejada,

and Dextraze (2002)

Photochemical Reflectance

Index (PRI)
PRI ¼ ðR531� R570Þ

ðR531þ R570Þ
Gamon, Penuelas, and Field (1992)

Normalise difference of 750/

705
ND750/705

ðR750� R705Þ
ðR750þ R705Þ

Raun et al. (2001)

Modified Chlorophyll

Absorption in Reflectance

Index (mCARI 1)

mCARI 1 ¼ 1.2[(2.5a(R761eR651)-1.3(R761eR581)] Haboudane et al. (2004)

Anthocyanin Reflectance

Index (ARI)
ARI ¼

�
1

R550

�
�

�
1

R700

�
Gitelson, Merzlyak, and Chivkunova (2001)
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Table 2 e (continued )

VIs Equations References

Chlorophyll Index (CI green)
CI ¼

�
R840
R570

�
� 1

Gitelson, Gritz, and Merzlyak (2003)

Chlorophyll-Index Rededge

(CIrededge
CIrededge ¼

�
R780
R705

�
� 1

Gitelson et al. (2003)

Chlorophyll vegetation

index
CVI ¼ R840

�
R760
R5502

�
Vincini, Frazzi, and D’Alessio (2007)

a Blue range: 430e450 nm, green range: 520e550 nm, red range: 620e670 nm, red edge: 730e780, and NIR: 830e850 nm.
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used to analyses and evaluate all VIs using the SPSS soft-

ware.The sensitivity value was another parameter that we

utilised in this study to evaluate the VIs. The sensitivity value

was calculated as the mean reflectance value of diseased

leaves divided by themean reflectance value of healthy leaves

(at each wavelength).

2.7. Radial basis function network (RBF)

A radial basis function (RBF) network is a type of neural

network. It makes use of supervisedmachine learning to work

as a non-linear classifier. In contrast to simple linear classi-

fiers that work on lower-dimensional vectors, non-linear

classifiers use advanced functions to go further deep into

the analysis. An RBF performs classification by measuring the

input’s similarity to examples from the training set. Each RBF

neuron stores a “prototype”, which is just one of the examples

from the training set. When we want to classify a new input,

each neuron computes the Euclidean distance between the

input and its prototype. RBF network uses radial basis func-

tions as its activation functions. The activation functions of

artificial neurons drive outputs that can be represented in

different ways to showhow the network classifies data points.

RBF network consists of input layers, hidden layers and output

layers similar to other types of neural networks. It often in-

cludes some type of non-linear activation function. Gradient

descent is used for the training of output weights. RBF is

generally considered a relatively intuitive approach and a

better way to address specialised machine learning problems.

In this study, the dataset (spectral signatures) were divided in:

70% training, 20% testing, and 10% holdout for validation of

the RBF neural network (Delnavaz & Zangooei, 2016).
Fig. 4 e Spectral reflectance signatures of healthy squash

plants and PM-infected plants in different disease

development stages (asymptomatic, early - late stages),

obtained under laboratory conditions.
3. Results and discussion

3.1. Spectral reflectance and classification analysis of
PM-infected squash in laboratory conditions

Leaveswere collected every 3e4 days, based on the progress of

PM disease (Table 1), to measure their spectral reflectance

under laboratory conditions. It was difficult to visually detect

the disease in the surveyed plants during the first two days

because the infected leaves were hidden beneath the non-

infected leaves. White powdery fungal growth develops on

both leaf surfaces, petioles, and stems, and usually, it de-

velops first on lower, mature leaves. Since, the infected leaves
were in the lower part of the plant canopy beneath younger

leaves, these factors make it difficult for the detection and

collection of PM-infected leaves. Yellow spots may form on

upper leaf surfaces opposite powdery mildew colonies

(McGrath, 1997). The spectral reflectance of leaves across time

varied depending on the disease symptoms. Figure 4 shows

that the spectral reflectance of leaves was increased in the

green and red range gradually as the disease progressed. The

increase of symptoms increased the spectral reflectance of

leaves to a very high level as in the late stage of PM disease. It

can be observed that the spectral reflectance of leaves in the

red range has a different shape when compared between late

disease stage and healthy or early disease stage. The most

significant bands were in the visible range, as the highest

spectral reflectance value was recorded in the red range at

630 nm for the late stage. The difference in sensitivity values

between asymptomatic and very early stage progress of PM

was noticeable at the range of 500e730 nm (Fig. 5). The most

significant difference in sensitivity values can be noticed be-

tween the asymptomatic stage and the very late stage, with a

highest at 394 nm (Fig. 5). In initial PM stages, the RBF classi-

fication rate achieved 82% accuracy, and it kept increasing
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Fig. 5 e Sensitivity values of PM-infected squash plants

under laboratory conditions.

Fig. 7 e Sensitivity values of PM-infected squash plants;

spectral data were collected using the UAV-based

technique.
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gradually to reach 99% in the late stages (Fig. 8a). The best

bands, where the most significant difference could be

observed, were selected between 966 nm and 989 nm for PM1,

PM2, PM3 and PM4 stages. Pairwise comparisons between the

healthy and each one of the PM stages using Tukey’s HSD

(Honestly Significant Difference with a ¼ 0.01) test indicated

that all wavebands presented in Table 3 can be used for dis-

ease detection. In the late stage PM5, the best bands were

different than the early stages, selected between 1005 nm and

1016 nm. This is in agreement with the result reported by Cao,

Luo, Zhou, Duan, and Cheng (2013); they found that the most

significant bands for PM detection in winter wheat was in the
Fig. 6 e UAV-based spectral reflectance signatures of

healthy squash plants and PM-infected plants in different

disease development stages (asymptomatic, early and late

stages).
NIR range, while the reflectance in the visible range could not

be used to detect the disease severity. For the very late stage

PM6, the best bandswere selected in blue range at 388e398 nm

(Table 3). It can be observed from the best (most significant)

bands selection, that in order to accurately differentiate be-

tween healthy and diseased plants, each PM stage needs to be

monitored separately by focusing in different spectral ranges.

The leaves with initial infection looked like healthy leaves,

while the leaves in intermediate and late stage had white

powder present on themand turned necrotic. As expected, the

detection in the asymptomatic stage was the most chal-

lenging, due to the limited changes in the physiology and

phenology of the plants at the first disease development

stages. Khan et al. (2020) reported that in PM-infected wheat

plants, the pigment concentration and photosynthetic ability

were altered slightly at the early infection stage, but reduced

quickly with the intensification of the disease severity. They

found that themost significant bands capable for detecting PM

in early infection stages were the near infrared bands. Zhang

et al. (2012) confirmed that the chlorophyll content, pigment

concentration and subsequent change in the carotenoids,

anthocyanins and xanthophylls pigments were reduced dur-

ing progress of PM in winter wheat.

3.2. Spectral reflectance and classification analysis of
PM-infected squash in field conditions (UAV-based)

The UAV-based spectral reflectance of the squash plants was

collected every 6e7 days, as the disease progressed in PM2,

PM5, and PM6 stages (Table 1). It can be noticed that there is a

significant difference between the spectral signatures of the

different PM stages when compared to a healthy plant (Fig. 6).

The spectral reflectance value increased in blue (400 nm),

green (520e550 nm), red and red edge for all disease stages. It

is important to note that there was a significant difference

between spectral signatures of healthy and asymptomatic

stage (PM2). The results were similar to the results of the
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Fig. 8 e Classification results and standard error of using the RBFmethod for distinguishing healthy and PM-infected squash

plants in different disease development stages in: a) laboratory, and b) field conditions (UAV-based).

Table 3 e The best (most significant) wavebands selected in laboratory and field conditions based on disease severity; the
weight value of each band is reported in parenthesis. The Tukey’s HSD test (a ¼ 0.01) was used; all weight values in the
Table belong to the same group (“a”).

Parameters category Significant wavelength (nm)

Lab-based

Healthy vs. PM1 991(100%), 976 (100%), 978 (99%), 992 (99%), 989 (98%)

Healthy vs. PM2 960 (100%), 964 (98%), 975 (98%), 966 (97%), 966 (97%)

Healthy vs PM3 975 (100), 964 (98%), 975 (98%), 966 (97%), 966 (97%)

Healthy vs. PM4 975 (100), 964 (98%), 975 (98%), 966 (97%), 966 (97%)

Healthy vs. PM5 1012 (100), 1014(99%), 1016 (98%), 1007 (98%), 1005 (97%)

Healthy vs. PM6 388 (100), 397 (99%), 394 (96%), 396 (94%), 390 (94%)

Field-based (UAV)

Healthy vs. PM2 646 (100%), 650 (100%), 655 (99%), 656 (99%)

Healthy vs PM5 591 (100%), 583 (99%), 579 (99%)

Healthy vs. PM6 689 (100), 655 (98%), 659 (99%), 646 (98%)
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laboratory measurements; the behavior of the spectral

reflectance for field and laboratory measurements had the

same structure especially in visible range. However, in NIR the

spectral signature for both measurements had different

spectral reflectance, especially for PM2 in the field. The PM2
had lower reflectance than in PM5 and PM6, while it was the

opposite in NIR. Sensitivity values (Fig. 7) had peaks for PM2

and PM6 in blue and red range, which means that these

spectral ranges could be used to differentiate these two dis-

ease stages.
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The RBF classification of healthy vs. PM2 was 89% (Fig. 8b),

hence, RBF was able to detect PM2 even with very few symp-

toms seen in the field. For healthy vs. PM5 the classification

rate was lower when compared to the PM2, because of some

external environmental conditions such as cloudy weather

and due to some leaves in the field that weren’t dry totally

from previous rain. Kaufman and Remer (1994) suggested that

the smoke dark clouds, dense vegetation and hazy atmo-

spheres would affect remote sensing reflectance measure-

ment. The highest classification value achieved was in very

late disease stage PM6 at 96% (Fig. 8b). The most significant

bands for differentiating between healthy and early stage

were selected in red range at 646 nm, 655 nm, 591 nm, 689 nm

(Table 3). In the red range, the spectral signature curve and

sensitivity values recorded significant variances. In a healthy

plant, most of the light is absorbed in blue and red rangewhile

reflecting light in the green range; so, any changes that might

occur in the leaves could affect the light absorption in all

ranges. This principle is used effectively in remote sensing, so

the increase or decrease of spectral reflectance values in red

range acts as an indicator for abnormal stress factors that

could affect the spectral reflectance (Lu, Ehsani, Shi, de Castro,

& Wang, 2018; Lu et al., 2017; Mahlein et al., 2013).

In the future, UAVs can be used tomonitor different stages

of a disease, differentiating between healthy, asymptomatic,

and late stages. This disease development monitoring can

help growers with determining the optimal timing and se-

lection of fungicides that need to be applied based on the

severity of the disease. This can effectively help in reducing

the amount of chemicals and controlling the disease before it

spreads to plants throughout the field or to neighboring

plantings. An infected leaf begins to lose chlorophyll slowly,

which turns it to yellow color. This affects the spectral

reflectance in visible range. Mahlein et al. (2013) detected

several diseases like PM, Cercospora leaf spot, and sugar beet

rust in sugar beet crop by comparing spectral reflectance

vales in the laboratory. These values were varied in visible

and in NIR based on the disease development stage. Water

content is very important for spectral reflectance analysis

too. For example, after 2 weeks from the initial infection of a

disease, leaves lose moisture content, making easier to

differentiate between healthy and late stage diseased plants.

One other factor that could affect the spectral reflectance is

the increase of brown pigment content in the leaves

(Penuelas & Filella, 1998). After few days from infection,

fungal pathogens (like PM) can cover the entire surface of

leaves and prevent the stomata and chlorophyll process to

work properly; that would lead to damage in the leaf’s tissue

which ultimately results in dead leaf cells in few days (Daub&

Ehrenshaft, 2000). The most challenging point to identify PM

was that the disease begins in the lower canopy of the plants

on the older leaves which are typically covered by the

younger leaves higher in the canopy, so any infection of older

leaves was difficult to be identified in very early stages. A low-

to-ground sensing could help mitigate this issue. There are

additional challenges when it comes to automatic disease

detection (Barbedo, 2016), because there aremultiple diseases
or other stress factors with similar symptoms that would

affect the spectral reflectance values, which makes it difficult

to accurately identify a particular disease (Polder, van der

Heijden, van Doorn, & Baltissen, 2014; Pourreza, Lee,

Etxeberria, & Banerjee, 2015).

3.3. Most significant VIs for detecting PM development
stages

3.3.1. Laboratory-based analysis
If the value of M value is more than 1.0, it presents a high

and good discrimination ability (de Castro, Ehsani, Ploetz,

Crane, & Abdulridha, 2015). The VIs with the highest M

value in early stages (PM1 and PM2) were the water index

(WI) and the photochemical reflectance index (PRI). How-

ever, M value trends were different in the advance stages

PM3 to PM6. Figure 9a and b presents the VIs that would best

distinguish between healthy and non-healthy plants. The

VIs discrimination ability was varied based on the disease

severity stages. In late stages of PM3, PM4, PM5 and PM6, WI

was the VI with the highest discrimination ability for in-

termediate and very late stages of disease development. ARI

and CVI were the VIs with lower discrimination ability in the

early stage, while RVSI, TCARI, and RASAb were the VIs with

lower discrimination ability in intermediate and late stages.

In fact, leaves looked similar in the asymptomatic stage PM1

and early stage PM2, and it was very difficult to differentiate

between them visually. In later stages, leaves had reduced

chlorophyll concentration and the fungus covered the entire

surface of the leaves preventing gas exchange, which led to

reduced water content, which made the leaves look like they

had drought symptoms (Pugliese, Gullino, & Garibaldi, 2010).

The WI was utilised to evaluate the performance of hyper-

spectral reflectance to measure leaf water content (Kovar

et al., 2019).

3.3.2. Field (UAV) based analysis
In field conditions, VIs were noticed to have their highest M

values in the late disease development stages (PM6). Powdery

mildew was detected from the UAV data even in very early

stage (PM1&2), when the plants had green leaves and looked

healthy (prior to visible symptoms). The trends of VIs in

asymptomatic stage was unique from intermediate and late

stage. For example, the Cl green, ND 750/705, GNDVI, SR 850

have the highest M values in late stage (PM6). The variation of

the VIs trends in each stage is evidence that the spectral

reflectance values were affected by changes in leaf properties

such as chlorophyll content, water stress, cells damage,

temperature of the canopy. All these factors will affect the

spectral reflectance due to light being defused, transmitted or

absorbed based on the leaf situation. The leaves of squash

plants in asymptomatic stage have lesswater stress; thewater

or cell sap usually absorbs the light rather than reflects it. It

was possible to detect PM even in asymptomatic stages by

using the Cl green, ND 750/705, GNDVI, SR 850 (Fig. 10).

Furthermore, it was possible to trace the disease development

stages by using UAV collected data and specific VIs.
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Fig. 9 e M values and standard errors for each VI in laboratory conditions for: a) PM1 and PM2 (early disease development

stages); and b) PM3, PM4, PM5 and PM6 stages.
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Fig. 10 e M values for each VI in field conditions (UAV-based) for PM2, PM5 and PM6.
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4. Conclusion

Spectral reflectance analysis of squash leaves was per-

formed in both laboratory and field conditions. The purpose

of this study was to detect different disease development

stages (asymptomatic, early, intermediate, and late disease)

of PM. The best (most significant) bands were selected to

differentiate between healthy plants and each of the disease

development stages of PM-infected plants. Using the RBF

method, the PM disease was detected even in the asymp-

tomatic stages and under both laboratory and field condi-

tions, with classification accuracies of 82% and 89% for the

asymptomatic and early stage, respectively. The highest

classification rate was obtained in the very late stage of the

disease development at 96% and 99% for laboratory and field

conditions, respectively. The most significant VIs that could

differentiate between different PM stages were the water

index (WI) in asymptomatic stage for laboratory conditions,

and the Cl green, ND 750/705, GNDVI, SR 850 in early and

late stages for laboratory and field (UAV-based) conditions.

Hence, a low-cost UAV-based multispectral system can be

developed to calculate the proposed VIs that can accurately

distinguish between healthy and PM-infected squash plants.

An additional study is needed to evaluate the detection ac-

curacy of the proposed technique in mixed infection con-

ditions (e.g., plants infected by multiple diseases).
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