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A B S T R A C T

Traditional sensing technologies in specialty crops production, for pest and disease detection and field pheno-
typing, rely on manual sampling and are time consuming and labor intensive. Since availability of personnel
trained for field scouting is a major problem, small Unmanned Aerial Vehicles (UAVs) equipped with various
sensors can simplify the surveying procedure, decrease data collection time, and reduce cost. To accurate and
rapidly process, analyze and visualize data collected from UAVs and other platforms (e.g. small airplanes, sa-
tellites, ground platforms), a cloud and artificial intelligence (AI) based application (named Agroview) was
developed. This interactive and user-friendly application can: (i) detect, count and geo-locate plants and plant
gaps (locations with dead or no plants); (ii) measure plant height and canopy size (plant inventory); (iii) develop
plant health (or stress) maps. In this study, the use of this Agroview application to evaluate phenotypic char-
acteristics of citrus trees (as a case study) is presented. It was found, that this emerging technology detected
citrus trees with mean absolute percentage error (MAPE) of 2.3% in a commercial citrus orchard with 175,977
trees (1,871 acres; 39 normal and high-density spacing blocks). Furthermore, it accurately estimated tree height
with 4.5% and 12.93% MAPE for normal and high-density spacing respectively, and canopy size with MAPE of
12.9% and 34.6% for normal and high-density spacing respectively. It provides a consistent, more direct, cost-
effective and rapid method for field survey and plant phenotyping.

1. Introduction

Precision agriculture aims to optimize resources usage to achieve
enhanced agricultural production and reduced environmental impacts
(Das, 2018). Assessment of crop growth and timely strategic responses
to crop production variations are fundamental challenges in precision
agriculture (Panda et al., 2010). In tree crops, measurements of in-
dividual tree parameters, such as tree canopy characteristics, are es-
sential to monitor tree growth and optimize orchard management
(Maillard and Gomes, 2016). Detecting, counting, and assessing in-
dividual trees in orchards allow the selection of appropriate horti-
cultural practices such as the timely application of chemicals and pre-
cision irrigation scheduling. Hence, the development of low cost high-
throughput phenotyping tools for tree crops is critical and urgent for
precision agriculture applications. Traditional sensing technologies for
evaluation of field phenotypes rely on manual sampling and are often
very labor intensive and time consuming, especially when covering

large areas (Mahlein, 2016; Shakoor et al., 2017; Zhang et al., 2019).
Additionally, field surveys for pest and disease detection, plant in-
ventory and plant health assessments are expensive, labor intensive and
time consuming (Cruz et al., 2019; Partel et al., 2019a; Luvisi et al.,
2016).

Remote sensing techniques have been widely applied in precision
agriculture for tree crops, utilizing a variety of sensing systems in-
cluding RGB, multispectral, and hyperspectral imaging, as well as Light
Detection and Ranging (LiDAR). RGB and multispectral sensors can be
consider as a low-cost systems comparing to hyperspectral and LiDAR.
Small unmanned aerial vehicles (UAVs) equipped with RGB and mul-
tispectral sensors have recently become flexible and cost-effective so-
lutions for rapid, precise and non-destructive high-throughput pheno-
typing (Ampatzidis et al., 2017; Pajares, 2015; Singh et al., 2016). UAVs
allow growers to constantly monitor crop health status, estimate plant
water needs, detect diseases and pests, and quantify pruning strategies
and impacts (Abdulridha et al., 2019a,b; Hariharan et al., 2019;
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Jiménez-Brenes et al., 2017). They represent a low-cost method for
image acquisition in high spatial and temporal resolution, and have
been increasingly studied for agricultural applications. Hunt et al.
(2010) analyzed UAV multispectral imagery for crop monitoring and
found a good correlation between leaf area index and the green nor-
malized difference vegetation index (green NDVI). Matese et al. (2013)
mapped the vigor of vineyards using the NDVI index from a high-re-
solution multispectral camera. Furthermore, UAVs have been utilized to
create plant inventories. Malek et al. (2014) achieved promising results
in detecting palm trees, by utilizing an extreme learning machine
classifier in UAV images. Dong et al. (2020) developed a technique to
detect individual apple and pear trees, with 99% and 99.3% F-scores
respectively, and to estimate tree-crowns area with a root mean square
error of 0.72 m2 and 0.48 m2 respectively. Few other efforts have been
made to develop UAV-based techniques for tree detection and counting
(Salamí et al., 2019), tree height and canopy estimation (Torres-
Sánchez et al., 2015; Mu et al., 2018; Fawcett et al., 2019), and tree
growth and yield prediction (Jiménez-Brenes et al., 2017; Sarron et al.,
2018).

In citrus, remote sensing from UAVs has been utilized to count in-
dividual trees (Csillik et al., 2018; Ok and Ozdarici-Ok, 2017), detect
HLB (Huanglongbing) and canker affected trees (Abdulridha et al.,
2019c; Garcia-Ruiz et al., 2013), and assess tree health/stress (Costa
et al., 2020). Romero-Trigueros et al. (2017) analyzed the correlations
of citrus physiology stresses and gas exchange status using multispectral
images collected by UAVs. Ampatzidis and Partel (2019) developed a
UAV-based high throughput phenotyping technique for citrus utilizing
artificial intelligence (AI) and machine learning (deep and transfer
learning). They utilized this technique for the rapid and efficient eva-
luation of different citrus cultivars and rootstock varieties in a large-
scale commercial field setting (Ampatzidis et al., 2019).

Deep learning and deep convolutional neural networks (CNNs) have
been increasingly used in remote sensing for agricultural applications
(Kussul et al., 2017; Cruz et al., 2017; Partel et al., 2019b). CNNs re-
quire large amount of data to create hierarchical features to provide
semantic information at the output (Krizhevsky et al., 2012). With the
increasing access to large amounts of aerial images from UAVs and
satellites, CNNs can play an important role in processing all these data
to obtain valuable information. However, the adoption of UAV-based
technologies for specialty crop growers is low (Ghatrehsamani et al.,
2018). The main reasons have been based on two fronts. First, the data
processing and analysis, in order to generate accurate and useful in-
formation, can be very complex and time consuming. Second, the
commercially available software provides limited practical information
for specialty crops.

Since UAVs can collect a huge and complex amount of data (from a
variety of sensors), big data analytics tools and cloud computing can be
utilized to increase data processing efficiency, provide data security and
scalability, and reduce cost. Cloud-based applications are a solution
with low upfront investments, efficient computational resource utili-
zation and usage-based costs (Jinesh, 2011). While standard software
must be installed and configured by the user and require maintenance
and thus some knowledge of the process, cloud computing eliminates
nearly all these concerns. Outsourcing a computation to an internet
service also provides advantages in terms of mobility and accessibility
(Hayes, 2008). This model allows companies to deploy applications that
could scale their computing resources on demand (Villamizar et al.,

2016).
This study presents a novel cloud- and AI-based application that can

be used to cost-effectively process, analyze, and visualize UAV collected
data (from other aerial and ground remote sensing platforms too) to
survey and assess agricultural fields. This emerging technology includes
a user-friendly and interactive interphase that simplifies the data pro-
cessing and visualization procedures in order to promote adoption of
UAVs and remote sensing for precision agriculture applications. This
system was evaluated in a commercial citrus orchards as a case study.

2. Materials and methods

2.1. Data acquisition and sensing platforms

In this study, two quadcopter UAVs (Matrice 210 and Phantom 4
Pro+, DJI, Shenzehen, China) were used for image acquisition. The
UAV flight planning and mission control were done by the
Pix4DCapture (Pix4D S.A., Prilly, Switzerland) software app used on an
iPad (Apple, Cupertino, CA, USA) connected to the remote controller of
the UAVs. The quadcopters was equipped with: (i) an RGB (red, green
and blue) camera (Zenmuse X5S, DJI, WA, USA), attached to the
Matrice 210; (ii) an RGB camera (Phantom 4 Pro + camera, DJI, WA
USA), attached to the Phantom 4 Pro + . Table 1 presents the speci-
fication of each sensing system.

2.2. Cloud-based software

Several cloud-based computing solutions are commercially avail-
able, with one of the options being the Amazon Web Services (AWS)
(Amazon, Seattle, Washington, USA), which provides a highly reliable
and scalable infrastructure for deploying cloud-based applications
(Buyya et al., 2010). The AWS system provides multiple types of in-
stances, machines with different configurations for specific applica-
tions, and allow the creation of instance images, copies of all config-
urations and software on an instance, allowing the use of multiple
similar machines.

The application developed in this study uses a general AWS instance
(m5a.xlarge) as a main application control machine (with the server to
the website), which serves as the user interface to the software. It
controls the other instances in the process using the AWS Command
Line Interface (CLI). The CLI provides one instance to control the use of
other instances in the AWS cloud by sending commands between in-
stances and the cloud.

The stitching engine uses a c5.9xlarge instance for Central
Processing Unit (CPU) intensive usage. The tree detection algorithm
(which is described below) runs on a p3.2xlarge instance for Graphics
Processing Unit (GPU) intensive usage. For scalability and parallel
processing, both instances work by creating an image for each process,
so the application can receive multiple maps to process at the same
time. The data is stored in a Hard Disc Volume unit on the AWS, al-
lowing the allocation of more memory to be upgraded as more data is
received.

Upon receiving new data to process, the website activates an image
of the engine instance to perform the stitching of the orthomosaic and
generate the Digital Surface Model (DSM) file. Once the orthomosaic
and DSM files are generated, the CPU image instance is closed. Then,
the GPU image instance is activated to perform the tree detection

Table 1
Specifications of the UAV-based sensing systems used in this study.

Sensing Systems Resolution Pixel resolution at 122 m (400 ft) flight altitude

RGB Zenmuse X5S 5,280 × 3,956 pixels (21 megapixels) 22 × 19 mm
RGB Phantom 4 Pro+ 5,472 × 3,648 pixels (19.96 megapixels) 12 × 12 mm
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algorithm. With the processing finished, the GPU image instance is
closed, and the resulting data are stored in the volume unit to be ac-
cessed by the website for display in the user interface. Fig. 1 shows the
workflow of the AWS system created.

2.3. Tree detection algorithm

The orthomosaic is processed by an algorithm developed in C in
multiple steps (Fig. 2) in order to output: (i) individual tree and tree gap
(skip) detection, (ii) tree height, (iii) tree canopy area estimation (iv)
tree health/stress estimation (among other information). The metho-
dology adopted in this study is an improvement of a methodology de-
scribed in Ampatzidis and Partel (2019). Briefly, the algorithm runs a
first CNN tree detection on the map and process its output to analyze
the field’s row orientation patterns and to estimate distances between
trees and between rows. Then, based on the field geometry, the algo-
rithm makes assumptions of probable tree locations, and uses this in-
formation to run a second classificator CNN based on the previous de-
tected positions.

The first difference between the original methodology (Ampatzidis
and Partel, 2019) and this study is the use of a low-cost RGB camera for
image acquisition (and target detections), instead of using more ex-
pensive multispectral cameras. Furthermore, instead of a YOLO
(Redmon and Farhadi, 2018) algorithm (adopted by Ampatzidis and
Partel, 2019), this proposed methodology uses a Faster R-CNN algo-
rithm (Ren et al., 2015) for the first CNN tree detection. Contrary to
YOLO, the Faster R-CNN is not suitable for real-time applications, but
usually yield better accuracy in object detection problems. The Faster
R-CNN is a Region Proposal Network (RPN), composed of two steps: (i)
development of a bounding-box for each object in the image; and (ii)
feature extraction of the region of interest (ROI) of each bounding-box
for a final classification. ResNet101 network was chosen empirically,
among different networks, after preliminary experiments. The second
CNN runs a YOLO classificator using the Darknet19 network on

locations, based on the detected field geometry.
The first step of this “tree detection” procedure is to gather image

data from an orchard using UAVs (or similar aerial or ground plat-
forms). With the images from the UAV flight, the user can choose to
process the raw images in a software of his choice to generate the or-
thomosaic, or to upload the raw images directly to the Agroview
website for processing using the cloud-based engine to generate the
orthomosaic map. The engine software used to generate the orthomo-
saic map in the proposed cloud-based application is an open source
toolkit named Open Drone Map (ODM), version 0.3.1, running on
Ubuntu 16.04. The ODM supports as inputs JPEG images from the UAV
cameras and generates an orthorectified image and a DSM using
structure from motion techniques (Turner et al., 2012). The DSM con-
tains the height information of the area flown (Fig. 3). After uploading,
the orthomosaic of the area flown will be available in the cloud for the
next step. Fig. 4 shows the workflow for the data acquisition and upload
process of the website.

When the orthomosaic is available in the cloud, the user has another
manual input: (i) develop the region of interest, which represents the
area where the user is interested in running the tree detection algorithm
(aka, field boundaries). This step includes a tool that allows the user to
select blank areas inside of the region for the algorithm to skip/ignore
(Fig. 5), such as lakes or buildings.

After the manual inputs, the orthomosaic map goes through a pre-
processing step of color calibration based on the RGB average levels of
the original image using histogram equalization (Cheng and Shi, 2004).
This preprocessing calibration reduces variations from different RGB
cameras, as each camera has its own calibration of color, exposure and
saturation. Hence, this preprocessing step can increase the effectiveness
of the CNN model developed. Fig. 6 shows this transformation applied
to an orthomosaic.

After the preprocessing step, the first detection algorithm runs
(Fig. 5) to find an initial number of trees and uses this information to
identify rows orientation. With the information of each row, the second

Fig. 1. Workflow of the Amazon Web Services (AWS) system.
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CNN classificator runs along each row for a more precise detection. The
final data is returned to the user in the cloud. Fig. 7 presents the
workflow of the entire process for using the cloud-based algorithm.

In the final processed map, when a user selects (“clicks”) a field
(e.g., citrus orchard), a window with some field analytics (e.g., total
number of tree and tree gap counts, field size, average values of tree
height and canopy area, etc.) is displayed (Fig. 8a). For more in-
formation about this field, the user has to click the “View Block” button
(Fig. 8a-left). Then, a new map is presented with tree and tree gap
detections (Fig. 8b). This interactive Agroview application allows the
user to select to display 2–4 different categories based on tree height,
canopy size, and tree health (Fig. 8b-left). The tree health indices were
developed based on Costa et al. (2020). Moreover, the user can select to
display on the map only trees that belong to a specific category; for
example, all trees with less than 7 ft height. The user can do that by
unselecting the other categories in the provided histogram (Fig. 8b-
left). The total number of trees that belong to a specific category can be
found by selecting a category on the provided histogram.

3. Experimental design

To evaluate the accuracy of the developed cloud-based technology,
several experiments were conducted in a commercial citrus orchard in
Hendry County, Florida (26.6557 N, 81.2891 W) (Fig. 9), in February
2019. The orchard comprised multiple blocks of Hamlin and Valencia
citrus varieties on a wide range of ages and sizes; all trees were over one
year old and over 1 m tall, which was a favorable condition for this

experiment, as it reduces the problem of detecting very small trees (less
than 1 m tall). The experiments were divided into: (i) evaluation of
detected number of trees and gaps (locations with no trees or dead
trees), and (ii) evaluation of detected tree height and canopy area. The
evaluation of the developed plant health (or stress) indices is presented
in Costa et al. (2020); this Agroview technology utilizes the same
methodology to generate the heath maps.

3.1. Evaluation of detected number of trees and tree gaps

The proposed algorithm was evaluated in terms of number of trees
and gaps detected for 39 different citrus blocks (1,871 acres) (Table 2).
A manual count of the number of trees (ground truth) was performed on
each block by trained farm crew members, by driving within the rows
and using a handheld manual counting device. The ground truth
number of gaps was estimated for each block by subtracting the count
of trees from the total spaces of that block. The blocks were divided
into: (i) normal tree spacing (blocks 1–23), where the block spacing was
7.8 × 3.6 m, and (ii) high density spacing (blocks 24–39), where the
spacing was 7.2 × 2.3 m (Table 2). The UAV data of all 39 blocks were
processed in the developed cloud-based software, and the obtained
results of trees and gap counts were compared to the manually mea-
sured numbers.

Fig. 2. Workflow of the smart and automated tree detection algorithm
(Ampatzidis and Partel, 2019). Fig. 3. Citrus grove block generated by the Open Drone Map (ODM) engine: a)

Orthomosaic map, and b) DSM.
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3.2. Evaluation of estimated tree height and canopy area

To evaluate the estimated (predicted) values of tree height and ca-
nopy area, a subset of 100 trees were selected and manually measured
on the field using measuring poles and tapes. Two blocks were ran-
domly chosen, and 50 trees were selected from each block to be
manually measured. The trees were randomly selected from different
rows spread across the blocks. One block (block 8) includes trees with
normal spacing, and another block (block 25) includes high-density
spacing trees (Table 3). The canopy area measurement (manually

measured) was defined to be the area of a rectangle enclosing the ca-
nopy. Although this definition overestimates the real tree canopy area,
it was selected, as it is a common practice followed by the citrus
growers.

3.3. Evaluation metrics

3.3.1. Mean absolute percentage error (MAPE)
The Mean Absolute Percentage Error (MAPE) is a statistical tool that

represents the error between a forecast and the ground truth value,

Fig. 4. Workflow of the data acquisition from UAVs and image upload process to the Agroview website.
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which in this study are the algorithm’s predictions and the manual
measurements, respectively. It is given by the absolute difference be-
tween measurements, divided by the ground truth value, which results
in a percentage.

3.3.2. Measure of agreement
Agreement between measurements refers to the degree of con-

cordance between two sets of measurements of the same individual by
two different methodologies. Statistical methods to test agreements are
used to decide whether one technique for measuring a variable can
substitute another (Ranganathan et al., 2017). Observations of two

different methods are often inappropriately evaluated for agreement
using the Pearson correlation coefficient, which is an incorrect measure
of reproducibility or repeatability (Watson and Petrie, 2010). The
Pearson correlation is heavily dependent on the dataset itself; for ex-
ample, one or few outliers may introduce a false sense of relationship
(Aggarwal and Ranganathan, 2016).

One of the techniques for agreement measurement is the Bland and
Altman diagram (Bland and Altman, 1999). This diagram is a display of
the pattern and agreement of one variable being measured by two
different methodologies (Watson and Petrie, 2010). In this study, the
methodologies compared are the manual methods (e.g., for tree counts,
tree height and canopy area measurements) and the estimations by the
algorithm. The Bland and Altman diagram plots the difference between
a pair of measurements on the vertical axis and the mean value of the
pair on the horizontal axis. Since the variability of the dataset is small
(e.g., tree count, height and area are similar to all individuals), we can
express this difference in pairs by percentage, by dividing all values by
the mean of each measurement.

To determine the repeatability, the method assumes a normal dis-
tribution of differences, where 95% of them are expected to lie between

±d s1.96 , where d is the mean of observed differences and s is the
standard deviation. When compared to a ground truth method, such as
the manual method for measuring trees, the value of upper and lower
limits with 95% probability is an acceptable statistical value of cer-
tainty and reproducibility for the measurement technique, which can
then be compared between other studies as it is not heavily dependent
on the dataset itself.

4. Results and discussion

After the data acquisition procedures, the data were processed on
the cloud to generate the results. The total processing time (to generate
the final results) was on average 120 min for a 60 acres block, being
around 90% of the time (108 min) on the orthomosaic processing and
development (stitching), and only 10% (12 min) for the preprocessing,
processing, tree detection, tree canopy measurements, and data visua-
lization.

4.1. Evaluation of tree and tree gap detection and counting

The detected number of trees and gaps, and the manual counted
number are presented in Tables 4 and 5, divided as normal spacing
blocks and high-density spacing blocks, respectively. The results show a
MAPE of 2.29% and 4.23% for tree and tree gap counts, respectively, on
the normal spacing blocks, and 4.50% and 9.17%, respectively, for the
high-density spacing blocks. The difference in error from the two blocks
categories is significant, around double for both trees and gaps count on
the high-density blocks. Trees close packed have more overlapping
canopies which has shown to be harder to distinguish and accurately
count, thus the difference in accuracy. Errors on gap counts were
greater than tree count errors on the majority of blocks (normal and
high-density spacing). This greater error is produced due to missed gaps
on the field boundaries; based on the field boundaries, the algorithm
predicts the beginning of a tree row and the location of its first tree (or
gap). Since, it is difficult to accurately define the field boundaries on a
map, the algorithm might produce more errors in the beginning of each
row (especially if the boundaries are not well defined by the user).

It must be noted that in this experiment there were no recently
planted trees; the youngest trees were 2 to 3 years old. The presence of
recently planted trees would certainly decrease the accuracy as small
trees (less than 1 m tall) are harder to detect. For example, it is difficult
to distinguish young trees from weeds, especially when the weeds have
the same height with the young trees. This threshold of size and age for
accurate young tree detection will be further investigated in future
studies.

The overall MAPE achieved for tree count prediction was 3.18%

Fig. 5. Algorithm workflow that presents the user manual inputs step, the color
calibration preprocessing step, the tree detection algorithm, and the generation
of the final data (dots represent plants; in this map, three colored dots present
three tree height categories).
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(97% accuracy), and for tree gap prediction was 6.86% (93% accuracy).
Currently, there are limited studies on individual tree detection for ci-
trus. Csillik et al. (2018) reported an accuracy of 96% in detecting
2,912 individual trees using a simple convolutional neural network and
a refinement algorithm based on super-pixels. Osco et al. (2020) pro-
posed a methodology using a CNN to generate confidence maps for
canopy occurrence and achieved 95% accuracy evaluating around
3,735 trees in a high-density citrus orchard. In a previous study that
shared some of the methodology proposed in this research, Ampatzidis
and Partel (2019) achieved an overall 99.8% accuracy, evaluated on a
relatively uniform and small citrus field (14 acres with 4,931 trees). In
the present study, a more complete and user-friendly workflow was
evaluated over a large citrus farm (175,977 trees; 1,871 acres; 39 citrus
blocks) comprising normal and high-density spaced trees. The eval-
uated area and number of trees were significantly larger than other
studies. Robustness and generality are important features on any re-
mote sensing technique to effectively incorporate this technology into
agricultural management.

The Bland and Altman diagram for tree counts is presented in

Fig. 10. A range of± 0.12 was achieved, which means that the proposed
technology has a 95% probability to detect and count trees with a
maximum error of 12%. However, Fig. 10 clearly shows that most of the
detections were between the range of ± 0.05 error. This indicates a high
probability for the algorithm to count trees with under 5% error.

A reliable and effective assessment of tree inventory on an orchard
is critical also for crop insurance purposes. Natural disasters, such as
hurricanes in Florida, can cause severe crop damage and insurance
claims. Quickly estimating this damage can improve the management
of insurance resources. After hurricane Irma in 2017 in Florida, the
United State Department of Agriculture (USDA) through the Risk
Management Agency developed new insurance policies, requiring
growers to create and submit accurate tree inventories for all perennial
tree policies that change insurance or experience a significant increase
or decrease in coverage each year. Currently, most citrus growers in
Florida hire consulting companies to manually count trees, which is a
very time consuming and labor intensive operation, since workers need
to drive throughout the fields to manually count and categorize trees
(using clickers or other counting devices). This manual procedure can

Fig. 6. a) Generated orthomosaic map, and b) color calibration preprocessed map.

Fig. 7. Workflow of the entire process for the cloud-based application (Agroview).
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Fig. 8. User interface to visualize data for: (a) multiple blocks (average field statistics for each block), and (b) individual field and tree information (e.g., tree
categories based on height or canopy size).

Fig. 9. Citrus farm, containing 39 citrus blocks, in Hendry County, Florida, where the evaluation experiments were conducted.
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cost up to $12–14/acre and takes 2–4 weeks to count trees in 1,000
acres. Citrus growers usually create tree inventories every
12–36 months, based on their management practices (e.g., re-planting)
or incidences of natural disaster events. The proposed UAV-based novel
technology, Agroview, can be used to develop tree inventories and save
the Florida citrus industry (among other industries all over the world)
at least 70% of the data collection cost, and 90% of the data collection
time.

4.2. Evaluation of tree height and canopy area estimation

A total of 100 trees were selected and their height and canopy area

manually measured from (i) block 8 (normal spacing), and (ii) block 25
(high-density spacing). These manual measurements were compared to
the estimations by the proposed cloud-based algorithm. Results are
presented in Figs. 11–13. The MAPE on height and canopy area for
block 8 were 4.47% and 13.88%, respectively. Block 25 (high-density)
obtained a MAPE of 12.93% and 34.46% for tree height and canopy
area, respectively. Ampatzidis and Partel (2019) reported a MAPE of
14.50% for canopy area estimation on a normal spacing grove, which is
very close to the obtained MAPE for block 8 (13.88%). The obtained
tree height and canopy area error were significantly higher for the high-
density block. This difference in errors, especially for the canopy area,
is due to the less clear canopy delineation on the high-density block.
Errors on tree height estimations were found to be mainly due to lack of
key points on the orthomosaic stitching process. This issue will be
further investigated in future research.

For block 8, the Bland and Altman diagram for tree height (Fig. 12a)
presents a range of ± 0.09,which means that the reliability of the
measurement for the tree canopy height is within 9% error, and for the
tree canopy area (Fig. 12b) presents a range of 35%. The larger range of
error for the area measurement shows that delineating tree canopies
(especially high-density ones) is harder than estimating the tree height.

The Bland and Altman diagram for the measurements of block 25
are presented in Fig. 13a (tree canopy height) and Fig. 13b (tree canopy
area). For the tree height, it shows a range of reliability of 21%, which
is accurate for most purposes. The range for tree canopy area is not so
accurate as the trees are closely packed and can confuse the algorithm
on where the delimitation is for each tree.

5. Conclusion

Precise and efficient crop management in orchards depends on
methods to detect and assess individual trees. A cloud- and AI-based
technique (Agroview application) was developed to automatically
process, analyze, and visualize UAV collected data for individual tree
monitoring and assessment. This interactive application comprised a
machine vision algorithm (AI-based) that uses deep learning to effec-
tively detect individual plants on aerial maps. An experiment conducted
on a large commercial citrus orchard (175,977 trees; 1,871 acres;
normal and high density spacing) achieved an overall tree detection
error of 2.29%. The Agroview estimated tree height and canopy area

Table 2
Citrus blocks selected for tree detection and count evaluation; blocks marked
with (*) indicate high-density tree spacing blocks. The normal tree spacing was
7.8 × 3.6 m, and the high density spacing was 7.2 × 2.3 m.

Block Area (acres) Block Area (acres) Block Area (acres)

1 73.3 15 32.2 29* 35.5
2 66.7 16 70.3 30* 50.1
3 64.7 17 61.5 31* 43.4
4 71.2 18 84.3 32* 27.1
5 73.8 19 70.2 33* 30
6 71.6 20 63.6 34* 28
7 66.4 21 31.2 35* 35.2
8 73 22 14.7 36* 36
9 38.9 23 39.4 37* 18.7
10 48.2 24* 34.3 38* 15
11 65.2 25* 36 39* 18.5
12 72.6 26* 32.9
13 67.6 27* 27.4 Total 1871.2
14 51.9 28* 30.6

Table 3
Blocks selected to evaluate the performance of the proposed algorithm to es-
timate tree height and canopy area.

Block Area (acres) Selected Trees Spacing

8 73 50 Normal
25 36 50 High-density

Table 4
Comparison between the algorithm’s tree and tree gap detections and manual counts in blocks with normal spacing (7.8 × 3.6 m).

Block Detected Trees Detected gaps Counted trees Counted gaps Error trees % Error gaps %

1 4907 4899 5032 5230 125 2.48% 331 6.33%
2 4432 4418 4523 4815 91 2.01% 397 8.25%
3 4309 4331 4406 4652 97 2.20% 321 6.90%
4 6397 3305 6244 3724 153 2.45% 419 11.25%
5 4394 5690 4395 5937 1 0.02% 247 4.16%
6 3238 6116 3180 6844 58 1.82% 728 10.64%
7 4679 4544 4487 4809 192 4.28% 265 5.51%
8 4715 5228 4681 5539 34 0.73% 311 5.61%
9 2139 3282 2135 3311 4 0.19% 29 0.88%
10 3127 3335 3158 3590 31 0.98% 255 7.10%
11 7055 2120 7030 2098 25 0.36% 22 1.05%
12 7011 3032 7050 3114 39 0.55% 82 2.63%
13 5532 3871 5300 4164 232 4.38% 293 7.04%
14 3138 3825 3131 4135 7 0.22% 310 7.50%
15 2334 2132 2348 2160 14 0.60% 28 1.30%
16 4816 4892 5162 4680 346 6.70% 212 4.53%
17 5531 3101 5693 2917 162 2.85% 184 6.31%
18 7336 4307 7309 4493 27 0.37% 186 4.14%
19 4181 5436 4220 5608 39 0.92% 172 3.07%
20 4503 4277 4511 4393 8 0.18% 116 2.64%
21 2476 1878 2400 1968 76 3.17% 90 4.57%
22 916 1005 1002 1056 86 8.58% 51 4.83%
23 2717 2746 2888 2628 171 5.92% 118 4.49%

MAPE 2.29% 4.23%
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with high accuracy too. The proposed user-friendly application has a
great potential to provide individual plant analysis over large areas and
to compare phenotypic characteristics on different sets of plants.
Recently, USDA developed new insurance policies, requiring growers to
create and submit accurate tree inventories for all perennial tree po-
licies. Traditional manual tree count techniques are very labor-in-
tensive, time-consuming, and expensive (cost of around $12–24/acre;
can take 2–4 weeks to cover 1,000 acres). The developed Agroview
application can create accurate tree inventories in sort time and save
the Florida tree industry (among other industries all over the world) at
least 70% of the data collection cost, and 90% of the data collection
time.
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Table 5
Comparison between the algorithm’s tree and tree gap detections and manual counts in high-density spacing (7.2 × 2.3 m).

Block Detected Trees Detected gaps Counted trees Counted gaps Error trees % Error gaps %

24 7130 1690 7268 1393 138 1.90% 297 21.32%
25 2828 5825 3128 5962 300 9.59% 137 2.30%
26 3745 4181 3971 4336 226 5.69% 155 3.57%
27 3431 4715 3625 4682 194 5.35% 33 0.70%
28 3050 4928 3251 4476 201 6.18% 452 10.10%
29 7107 1720 6970 1994 137 1.97% 274 13.74%
30 9771 2711 9493 3157 278 2.93% 446 14.13%
31 9355 1679 9254 1705 101 1.09% 26 1.52%
32 2003 4547 2173 4386 170 7.82% 161 3.67%
33 2739 4592 2939 4491 200 6.81% 101 2.25%
34 2657 4048 2827 4243 170 6.01% 195 4.60%
35 5956 2761 5768 3120 188 3.26% 359 11.51%
36 4995 3805 5064 4026 69 1.36% 221 5.49%
37 3104 1545 3019 1703 85 2.82% 158 9.28%
38 3252 733 3141 647 111 3.53% 86 13.29%
39 3584 1125 3801 870 217 5.71% 255 29.31%

MAPE 4.50% 9.17%

Fig. 10. Bland and Altman diagram for the tree detection and count of the 39
studied citrus blocks.

Fig. 11. Error for tree height and canopy area prediction for: a) block 8 (normal
spacing), and b) block 25 (high density spacing).
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