Emerging Technologies for Precision Management in Vegetables

Precision Engineering Program

Dr. Yiannis Ampatzidis

Assistant Professor

Southwest Florida Research and Education Center

Agricultural and Biological Engineering Department,

University of Florida

4th Agricultural Revolution

Digital Farming / Big Data / Internet of Things (IoT)

Smart Farming / Smart-Intelligence Machinery

Robotics / Artificial Intelligence (AI) /Automation

UAV Imaging

- Thermal
- Multi-Spectral
- Hyperspectral
- Visual RGB

• LiDAR

UAV-based EDIS Documentation

- Kakarla S.C., and AmpatzidisY., 2018. Instructions on the Use of Unmanned Aerial Vehicles (UAVs) for Agricultural Applications. EDIS, University of Florida, IFAS Extension.
- Kakarla S.C., De Morais L., and Ampatzidis Y., 2019. Pre-Flight and Flight Instructions on the Use of Unmanned Aerial Vehicles (UAVs) for Agricultural Applications. EDIS, University of Florida, IFAS Extension.
- Kakarla S.C., and Ampatzidis Y., 2019. Post-Flight Data Processing Instructions on the Use of Unmanned Aerial Vehicles (UAVs) for Agricultural Applications. EDIS, University of Florida, IFAS Extension.
- Ampatzidis Y., 2018. *Applications of Artificial Intelligence for Precision Agriculture*. EDIS, University of Florida, IFAS Extension.

Remote Pilot License Training

In order to obtain a Remote Pilot Certificate from FAA under the Small UAS (Part 107) rule, you must pass the initial aeronautical knowledge exam. This training will prepare you to pass this exam and obtain your certificate.

What you learn:

Airspace and Aeronautical Symbols Aeronautical Charts FAA Part 107 Regulations Airspace Classification Aviation Weather Risk Management and much more

Tuesday, April 30th, 2019 9:00 a.m. - 3:45 p.m.

UF / IFAS Southwest Florida Research and Education Center 2685 SR - 29 / Immokalee, Florida 34142

Register for your spot on the Eventbrite link (\$75 per person) below. There is no registration fee for extension agents, and UF faculty, students and staff (\$10 is requested for lunch). Still need to register here:

https://www.eventbrite.com/e/remote-pilot-license-training-tickets-59955736221 Lunch is provided.

For questions, call 239-658-3415 or email Jennifer Derleth at jderleth@ufl.edu.

Remote Pilot License Training April 30, 2019 Southwest Florida Research and Education Center

Agenda

9-9:15 am

Opening remarks and introductions- Dr. Yiannis Ampatzidis and Jennifer Bearden -15 min
 0.15 0:55 em

9:15-9:55 am

Section 1 – Aircraft identification and registration – 30 min

Break/questions - 10 minutes

9:55-11:15 am

- Section 2 Airspace and Aeronautical Symbols 50 min
- Sectional Chart Reading Activity 20 min

Break/questions - 10 minutes

11:15-12:15 pm

Section 3 – Aviation weather and effects – 50 min

Lunch Break

1-1:20 pm

• UF procedures- John Rouse - 20 min

1:20-2 pm

Section 4 – Risk management – 30 min

Break/questions - 10 min

2-2:45pm

Section 5 – Aeronautical knowledge – 30 min

2:45-3:15 pm

Applications in Agriculture-Yiannis Ampatzidis and Jennifer Bearden-30 mins

Final questions – 20 min

Planning Committee: Yiannis Ampatzidis, Jennifer Bearden, Jim Fletcher, Gene McAvoy

KIWI UAV Spraying System

UAV-based Object Detection using Artificial Intelligence (AI)

Ampatzidis Y., and Partel V., 2019. UAV-based High Throughput Phenotyping in Citrus Utilizing Multispectral Imaging and Artificial Intelligence. Remote Sensing, 11(4), 410; doi: 10.3390/rs11040410.

Agroview.farm - sing in

Please sign in	
Email address	
Password	
□ Remember me	
Sign in	
or Create a free account	
Click here to view a demo field	

- ➤ UAV and ground-based high throughput phenotyping in citrus utilizing artificial intelligence. Huanglongbing Multi-Agency Coordination (MAC) Group. Duration: 8/1/2019 7/31/2021.
- UAV-based high throughput phenotyping in specialty crops utilizing artificial intelligence. Florida Specialty Crop Block Grant Program - Farm Bill (SCBGP-FB). Duration: 1/1/2020 – 8/31/2022.

Agroview – settings

Agroview – add block

Agroview – create field boundaries

Agroview – farm analytics

Agroview – field analytics

Cloud-based application to process, analyze, and to visualize UAV collected data

https://twitter.com/i/status/1202671242647490560

Citrus Rootstock Evaluation Utilizing UAV-based Remote Sensing and Artificial Intelligence

Ampatzidis Y., Partel V., Meyering B., and Albrecht U., 2019. Citrus Rootstock Evaluation Utilizing UAV-based Remote Sensing and Artificial Intelligence. *Computers and Electronics in Agriculture*, 164, 104900, doi.org/10.1016/j.compag.2019.104900.

Best Management Practices UAV-based Nutrient Estimation and Precision Fertilizer Applications

Manual Data Collection

- 800 trees (Hamlin and Valencia)
- 8 hours sample collection
- 4 people
- 2 weeks lab analysis
- Estimated cost: *\$10,500*

UAV-based with Agroview

- 5,000 trees
- 30 min flight
- 1 person
- 5 min analysis
- Estimated cost: \$100

Vineyard Map - NDVI

Vineyard Map - VRT

Detection of target spot and bacterial spot diseases in tomato using UAV-based hyperspectral imaging

STDA Cross validation (%)
MLP Correct Classification (%)

UAV-based Disease Detection Hyperspectral Imaging

Spectral reflectance signatures of *Tomato yellow leaf curl virus* (TYLCV, on susceptible and resistant tomato varieties), Bacterial Spot (BS), and Target Spot (TS) infected tomato plants

Spectral reflectance signatures of healthy squash plants and Powdery Mildew (PM) infected plants in different disease development stages (asymptomatic, early and late stages).

Detecting Skips in Sugarcane Fields

Termer - Same Denser -

Yield prediction in winter wheat under stress environmental conditions

- Panel A: 40 genotypes (250 plots) (2018-2019) for heat stress tolerance.
- Panel B: 260 genotypes (2017-2018) under irrigated and drought conditions.
- Plot size: 5.1 m2 (3.3 x1.52 m)
- UAV-based hyperspectral data (400–1000 nm) at 200 ft
 (last fight: 1 month before harvest).

Yield prediction in winter wheat under stress environmental conditions

Mean Absolute Percentage Error (MAPE) for each group in the cross-validation of Panel A.

	Group 1	Group 2	Group 3	Group 4	Group 5	Mean
МАРЕ	15,6%	10,2%	12,2%	12,0%	17,1%	13.4%

Whisker graph for the error in yield prediction

for Panel A.

Bland and Altman diagram in percentage for the Panel A dataset.

https://twitter.com/i/status/1042058065481269248

Smart Spray Technologies

Example: more than 90% of the cropland in the U.S. are being sprayed by more than 3 billion pounds of herbicides that costs around \$26 billion each year.

Overuse of these chemicals creates *herbicide-tolerant weeds with around 250 known* species of resistant weeds.

GreenSeeker by Trimble

"The Trimble® GreenSeeker® crop uses optical sensors to measure and quantify crop health—or vigor. It can precisely manage crop inputs on-the-go. With GreenSeeker, you can address field variability by applying the right amount of fertilizer, in the right place, at the right time."

https://agriculture.trimble.com/product/greenseeker-system/

Artificial Intelligence for Precision Pest Management in Vegetables and Strawberry

Precision Weeding Blue River Technology

See & Spray every weed

5,000 plants per minute
 40 acres/day by one machine
 ¹/₄ precision in inches at 4 mph

Smart Weed-Killing Robots

https://www.cnbc.com/2018/06/04/weed-killing-ai-robot.html

Precision Sprayer (PS) for Weed Management

Partel V., Kakarla S.C., and Ampatzidis Y, 2019. Development and Evaluation of a Low-Cost and Smart Technology for Precision Weed Management Utilizing Artificial Intelligence. Computers and Electronics in Agriculture, 157, pp. 339-350.

Before

After

Experimental Design

Portulaca (target weed)

Sedge (non-target weed)

Pepper plant (non-target)

Precision Sprayer (PS) for Weed Management

https://twitter.com/i/status/1045013127593644032

Precision Sprayer (PS) for Weed Management Demo/Video

Smart Technology for Weed Management **Precision Ag** Engineering Program SWFREC University of Florida i.ampatzidis@ufl.edu @PrecAgSWFREC **No-Target** No-Target weed: Sedge Crop: Pepper Target weed: Portulaca Target

https://twitter.com/i/status/1045013127593644032

Precision Sprayer (PS) for Weed Management

Partel V., Kakarla S.C., and Ampatzidis Y, 2019. **Development and Evaluation of a Low-Cost and Smart Technology for Precision Weed Management Utilizing Artificial Intelligence**. Computers and Electronics in Agriculture, 157, pp. 339-350.

Precision Sprayer (PS) for Weed Management

Partel V., Kakarla S.C., and Ampatzidis Y, 2019. **Development and Evaluation of a Low-Cost and Smart Technology for Precision Weed Management Utilizing Artificial Intelligence**. Computers and Electronics in Agriculture, 157, pp. 339-350.

High Throughput Multi-Robot Weed Management for Specialty Crop

NRI: INT: COLLAB: *High Throughput Multi-Robot Weed Management for Specialty Crop*. National Robotic Initiative (NRI), Nasional Research Foundation (NSF).

Potential to Mechanically Harvest Specialty Crops

Types of Machinery

- Harvest-aid systems
- Trunk shakers
- Canopy shakers
- Entire crop harvesters
- Fruit harvesters (robotic arms, vacuum systems etc.)
- Robots

Agrobot Strawberry Harvester

https://www.youtube.com/watch?v=RKT351pQHfI

https://www.youtube.com/watch?v=RKT351pQHfI

Tomato Robotic Harvester Four Growers

https://www.youtube.com/watch?v=-qQffIHmlXk&feature=youtu.be

Harvey the Robotic Capsicum (Red Pepper) Harvester

https://www.youtube.com/watch?v=8rq4iSTsg68

Strawberry Robot in Japan

https://www.youtube.com/watch?v=9Su2XQyuavM

Mechanization of Strawberry Harvesting for Long Term Sustainability

PI: Yiannis Ampatzidis. Mechanization of Strawberry Harvesting for Long Term Sustainability. Specialty Crop Research Initiative, USDA/NIFA. Budget: \$3,145,307.

Questions/Comments? 'Thanks for your attention!

Yiannis Ampatzidis Assistant Professor Agricultural and Biological Engineering Department University of Florida Southwest Florida Research and Education Center, Immokalee Office: 239-658-3451

Follow us on Twitter: https://twitter.com/PrecAgS

Left to Right: Daniel Escobedo Summer Intern. Jorge Escobedo Summer Intern. Dr. Jaafar Abdulridha Post Doctoral Associate. Dr. Yiann tzidis Program Leader, Dr. Xiuhua Zhang Visiting Scholar from China, Dr. Thanos Balafoutis Visiting Scholar from Greece, Magda Derival Shirin Ghatresamani PhD Student, Sri Charan Kakarla Engineer Not Pictured: Victor Partel Research Assistant

