- Efficacy & Longevity

Ramdas Kanissery

Asst. Professor

Southwest Florida Res. & Education Center Immokalee

Horticultural Sciences

Efficacy

Managing emerged weeds effectively

Longevity

PRE-emergent herbicides for long-term weed control

- Research updates
 - Anh. ammonia as an alternative fumigant

Efficacy

Managing emerged weeds effectively

Longevity

PRE-emergent herbicides for long-term weed control

- Research updates
 - Anh. ammonia as an alternative fumigant

Weed management in vegetables

'Weed free' row middles

Weed managed rows middles

Weed management in vegetables

- Constant supply of moisture and nutrients
- Major challenge is 'longer-term' suppression of weeds

Weeds come up quickly in the row middles b/w raised beds

Important strategy to prevent weed outbreak in your farm

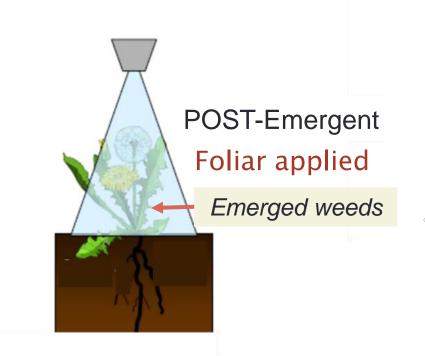
Heavy infestation of **Ragweed Parthenium** in row-middles and beds

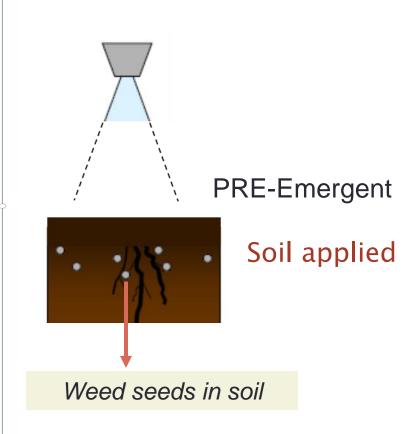
Heavy infestation of **cutleaf primrose** in row-middles

Each plant can potentially add <u>hundreds of thousands</u>
 of seeds to soil

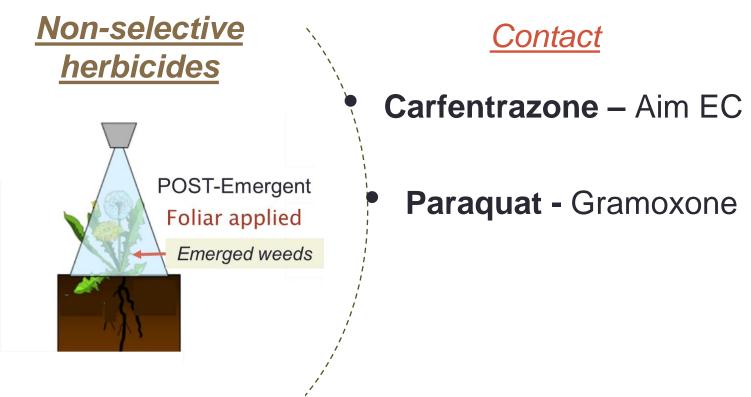
Amaranth / Pigweed

Heavy seed setters

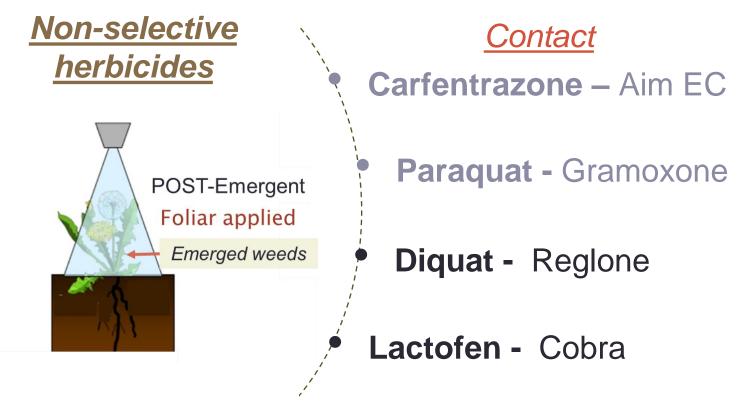



Purslane

Black Nightshade


Weed management tool box — chemical control — utilizing herbicides

Major POST-emergent herbicides used in FL vegetables

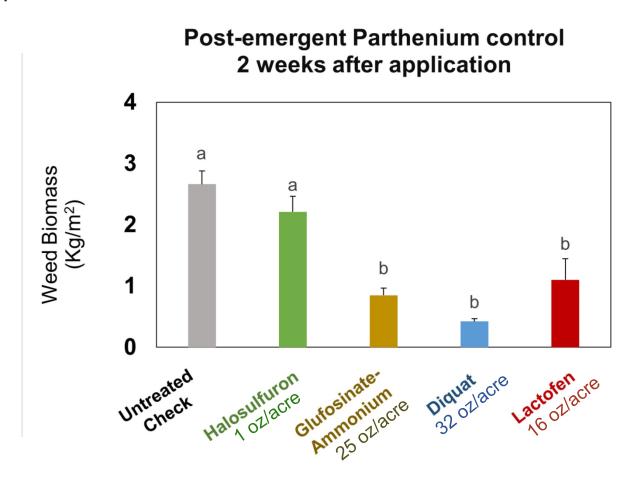

Active ingredient – Brand name(s)

Consult **UF-Vegetable production Guide 2019-20** for crop specific listing and rates of herbicides.

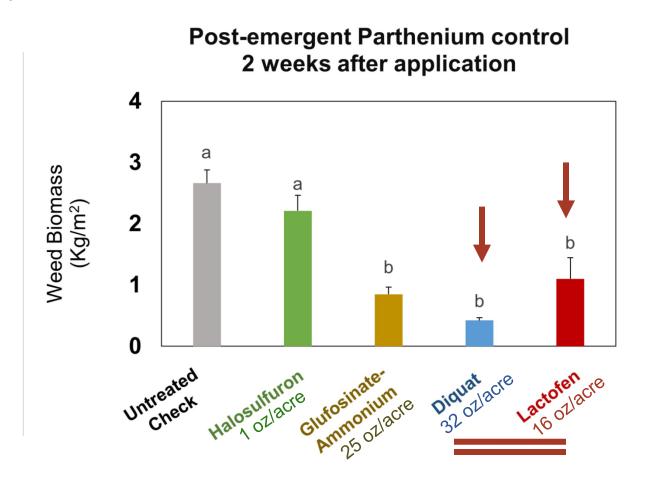
Major POST-emergent herbicides used in FL vegetables

Active ingredient – Brand name(s)

Consult **Vegetable production Guide 2019-20** for crop specific listing and rates of herbicides.

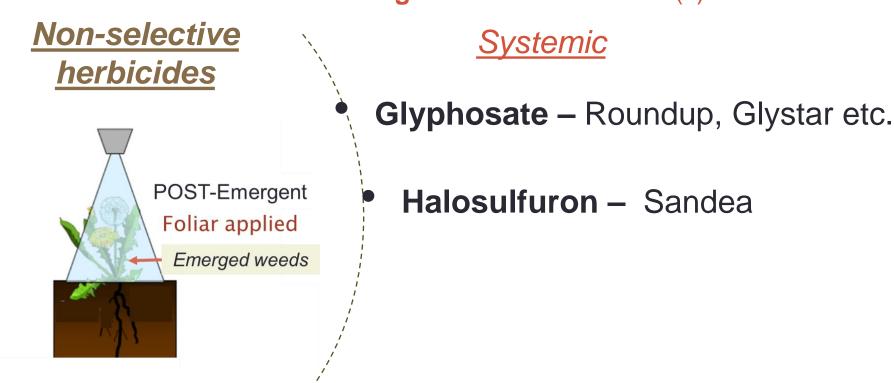

Lactofen and Diquat are effective management option for ragweed parthenium

Heavy seed setters


Parthenium

Potential herbicide options studied for effective POST-emergent management of parthenium

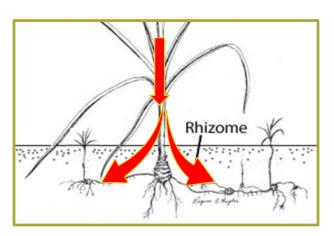
- Replication (n) = 5
- Mean comparison: Tukey's hsd (α 0.05)


Potential herbicide options studied for effective POST-emergent management of parthenium

- Replication (n) = 5
- Mean comparison: Tukey's hsd (α 0.05)

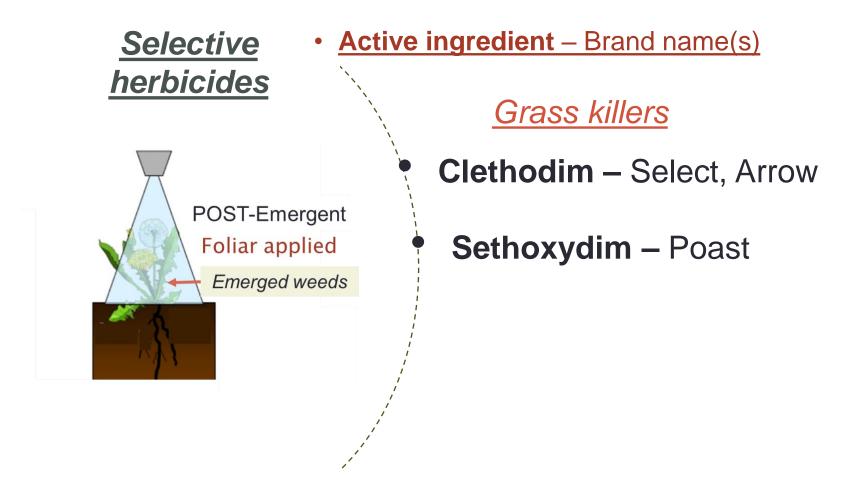
Major POST-emergent herbicides used in FL vegetables

Active ingredient – Brand name(s)


Consult **Vegetable production Guide 2019-20** for crop specific listing and rates of herbicides.

Halosulfuron is an effective management option for perennial weeds like nutsedge

Nut sedge


Perennial weeds

Rhizome & Tubers

- Underground structures

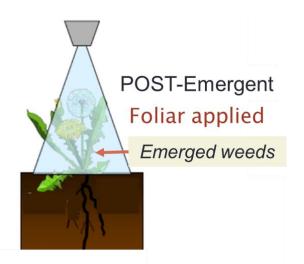
Major POST-emergent herbicides used in FL vegetables

Consult **Vegetable production Guide 2019-20** for crop specific listing and rates of herbicides.

Grass weeds

- Clethodim Select, Arrow
- Sethoxydim Poast

- ACCase inhibitors
- Controls most grasses
- Low or no injury to crops



Crow foot grass

Goose grass in the row middle areas

POST-emergent herbicides

<u>Spray coverage on foliage</u> – key factor

50 gallons or less per acre

Higher spray volumes

- Dense weed infestations
- Large weeds / advanced growth stage

POST- herbicides works best

when weeds are in early growth stage and active

Spray additives

- Water conditioners
- Surfactants

Efficacy

Managing emerged weeds effectively

Longevity

PRE-emergent herbicides for long-term weed control

- Research updates
 - Anh. ammonia as an alternative fumigant

Efficacy

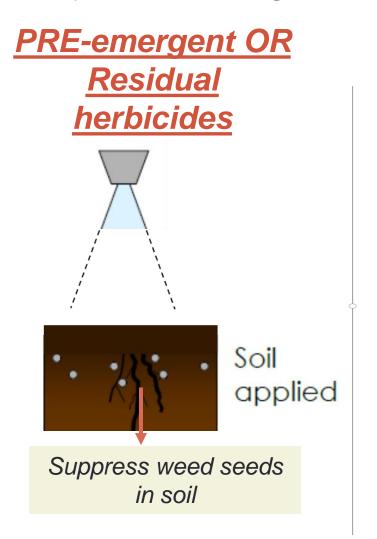
Managing emerged weeds effectively

Longevity

PRE-emergent herbicides for long-term weed control

Research updates

Anh. ammonia as an alternative fumigant


Weed management tool box — chemical control — utilizing herbicides

PRE-emergent OR Residual herbicides Soil applied Suppress weed seeds in soil

Prevent seed germination

- Applied to bare soil or minimum 'existent weed coverage' to ensure max soil incorporation.
- Rainfall or irrigation will help activate them in soil.

Major PRE-emergent herbicides used in FL vegetables

Active Ingredient	Product(s)
Flumioxazin	Chateau
S-metolachlor	Dual Magnum
Pendimethalin	Prowl H ₂ O
Metribuzin	Metribuzin, Sencor
Sulfentrazone	Spartan
Rimsulfuron	Matrix
Trifluralin	Trifluralin, Treflan

Consult **Vegetable production Guide 2019-20** for crop specific listing and rates of herbicides.

Row-middle weed suppression using PRE-emergent herbicides

Active Ingredient(s)	Products	Product Rate (per acre)
Flumioxazin	Chateau	4.0 oz.
S-metolachlor	Dual Magnum	1.0 pt.
Pendimethalin	Prowl H ₂ O	1.25 pt.
Metribuzin	Metribuzin	0.50 lbs.
Sulfentrazone	Spartan	4.125 oz.
Rimsulfuron	Matrix	1.5 oz.
Trifluralin	Trifluralin HF	1.0 pt.
Untreated Check		

Study location: <u>Immokalee</u>

Spring 2019

1 Month

Active		Product Rate	Weed control (%)					(%)
Ingredient(s)	Products	(per acre)	0	20	40	60	80 I	100
Flumioxazin	Chateau	4.0 oz.						
S-metolachlor	Dual Magnum	1.0 pt.						
Pendimethalin	Prowl H ₂ O	1.25 pt.						ı
Metribuzin	Metribuzin	0.50 lbs.						
Sulfentrazone	Spartan	4.125 oz.						4
Rimsulfuron	Matrix	1.5 oz.						
Trifluralin	Trifluralin HF	1.0 pt.					i	4
Untreated Check							1 	
- Replication (n) = 4						7	5%	, D

Replication (n) = 4

Error bars: Standard Error

Products

Chateau

Product Rate (per acre)

4.0 oz.

Dual Magnum 1.0 pt.

Pendimethalin Prowl H₂O 1.25 pt.

Metribuzin Metribuzin 0.50 lbs.

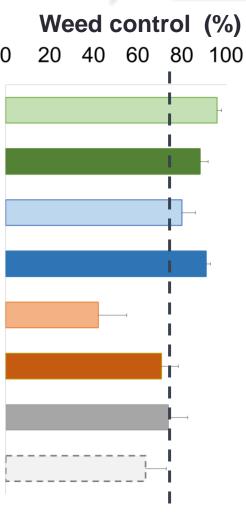
Sulfentrazone Spartan 4.125 oz.

Rimsulfuron Matrix 1.5 oz.

Trifluralin Trifluralin HF 1.0 pt.

- Replication (n) = 4

Active


Ingredient(s)

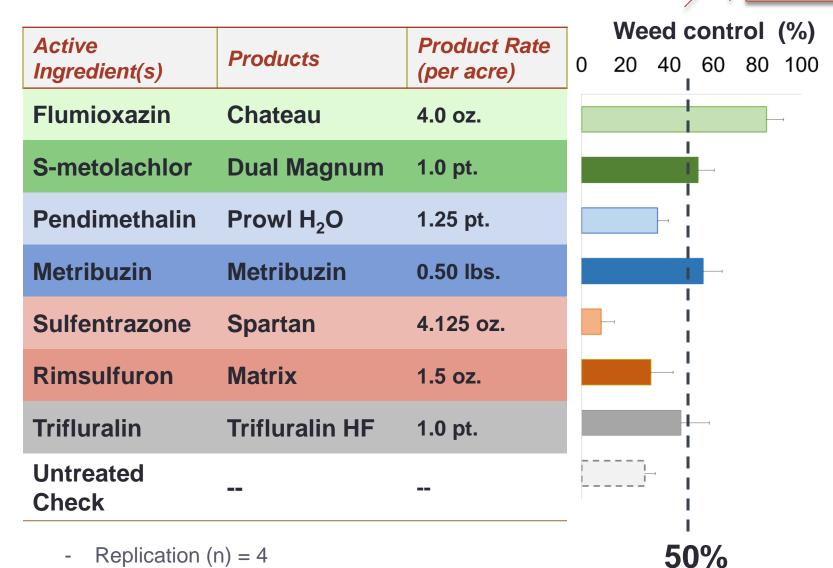
Flumioxazin

S-metolachlor

- Error bars: Standard Error

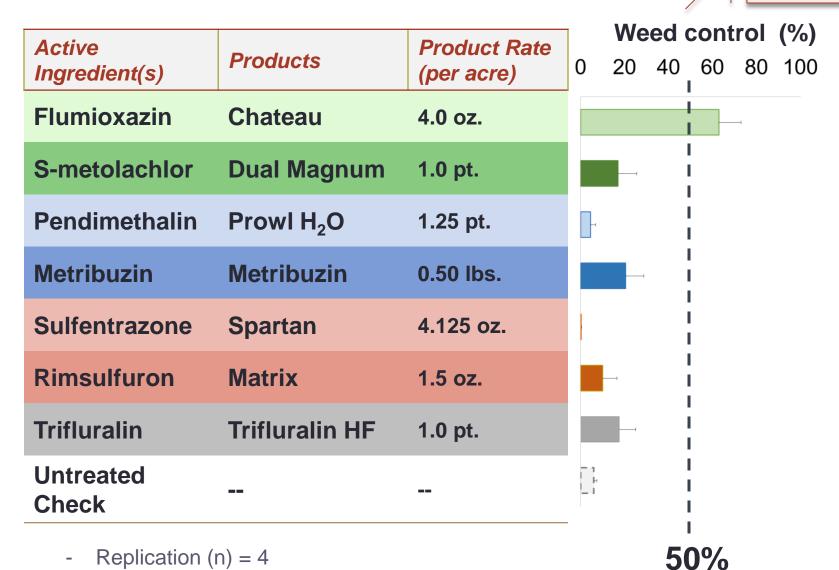
2 Months

75%


Weed control (%) Active **Product Rate Products** 20 40 60 80 100 0 Ingredient(s) (per acre) **Flumioxazin** Chateau 4.0 oz. S-metolachlor **Dual Magnum** 1.0 pt. **Pendimethalin** Prowl H₂O 1.25 pt. Metribuzin Metribuzin 0.50 lbs. Sulfentrazone Spartan 4.125 oz. Rimsulfuron **Matrix** 1.5 oz. **Trifluralin Trifluralin HF** 1.0 pt. Untreated Check

- Replication (n) = 4

- Error bars: Standard Error


3 Months

75%

3 Months

- Replication (n) = 4
- Error bars: Standard Error

4+ Months

Replication (n) = 4

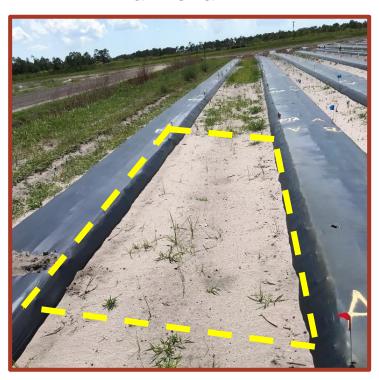
Error bars: Standard Error

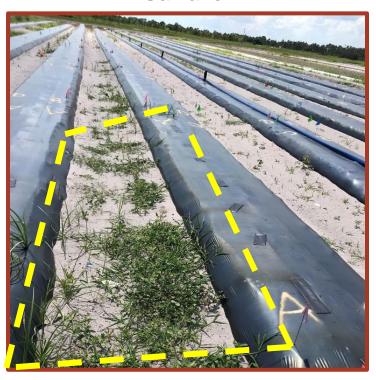
Row-middle herbicide

study

Nutsedge *Cyperus sp.*

Weeds controlled



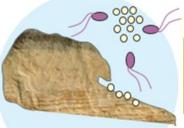

Starviolet *Heydotis sp.*

Cupid's shaving brush *Emelia sp.*

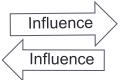
Flumioxazin

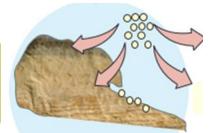
Rimsulfuron

How long a herbicide stays intact in the soil?


Adsorption

- Soil binding


Herbicide persistence

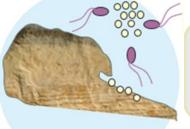

Breakdown

- Half-life

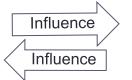
Movement

- Leaching

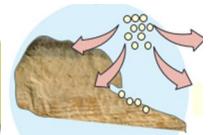
How long a herbicide stays intact in the soil?


Adsorption

- Soil binding

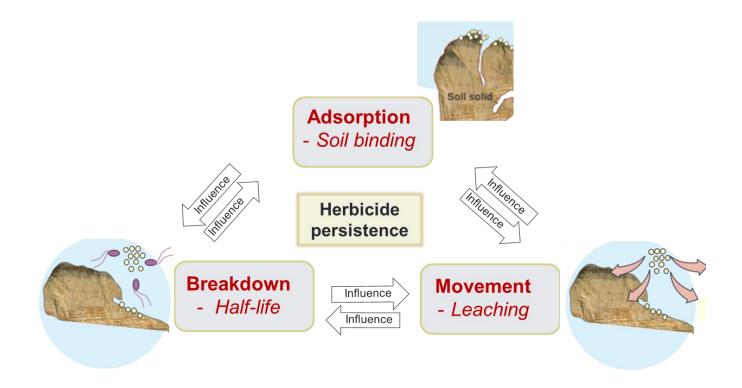


Herbicide persistence



Breakdown
- Half-life

Movement


- Leaching

Active Ingredient(s)	Products	Adsorption Binding capacity - K _{OC}	Movement Leachability in sandy soil
Flumioxazin	Chateau	557	Low
S-metolachlor	Dual Magnum	100	Moderate
Pendimethalin	Prowl H ₂ O	25455	Very Low
Metribuzin	Metribuzin	25	High
Sulfentrazone	Spartan	43	High
Rimsulfuron	Matrix	55	High
Trifluralin	Trifluralin HF	6581	Low

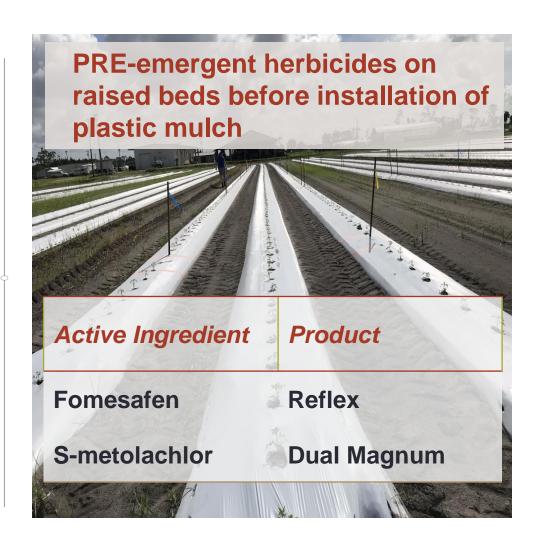
Source:

National Pesticide Information Center – NPIC database

Long Persistence

- Good for weed control extended duration
- But need to watch out possible carry over toxicity to crops

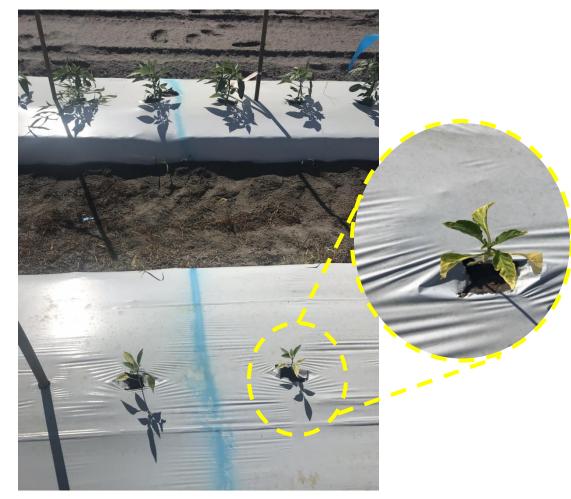
Nutsedge management is one of the main challenges faced by producers


 Nutsedge infestation in plasticulture production

Yellow Nutsedge taking over the plastic beds Immokalee, FL

PRE-emergent OR Residual **herbicides** Soil applied Suppress weed seeds

in soil



Herbicide injury to transplants in vegetable beds is a great concern for

growers

 S-metolachlor sprays on beds manage nutsedge very effectively

 But, potentially injure the transplants and could delay their establishment when herbicide get into the root zone.

S-metolachlor (Dual Magnum): injured pepper transplant from metolachlor application under the plastic beds

Ongoing research

Root protectants studied:

- Activated charcoal
- Hydrogel polymers

Shown potential to prevent herbicide root uptake and injury in pepper transplants.

Vegetable Weed Management

Efficacy

Managing emerged weeds effectively

Longevity

PRE-emergent herbicides for long-term weed control

Research updates

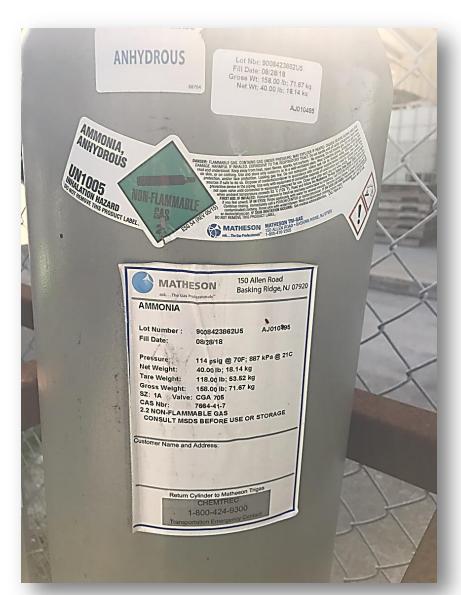
Anh. ammonia as an alternative fumigant

Vegetable Weed Management

Efficacy

Managing emerged weeds effectively

Longevity


PRE-emergent herbicides for long-term weed control

- Research update:
 - Anh. ammonia as an alternative fumigant

 Moves in soil & desiccate weed seeds and tubers

Potential for suppressing

- Nutsedge emergence
- Soil borne pathogens

 Moves in soil & desiccate weed seeds and tubers

Potential for suppressing

- Nutsedge emergence
- Soil borne pathogens

Deep Shank Application
 14-16 inches deep from bed top

Anhydrous ammonia tank mounted and applied from a bedder through shanks

- Caustic
- Requires Specialized Lines, Training, and PPE

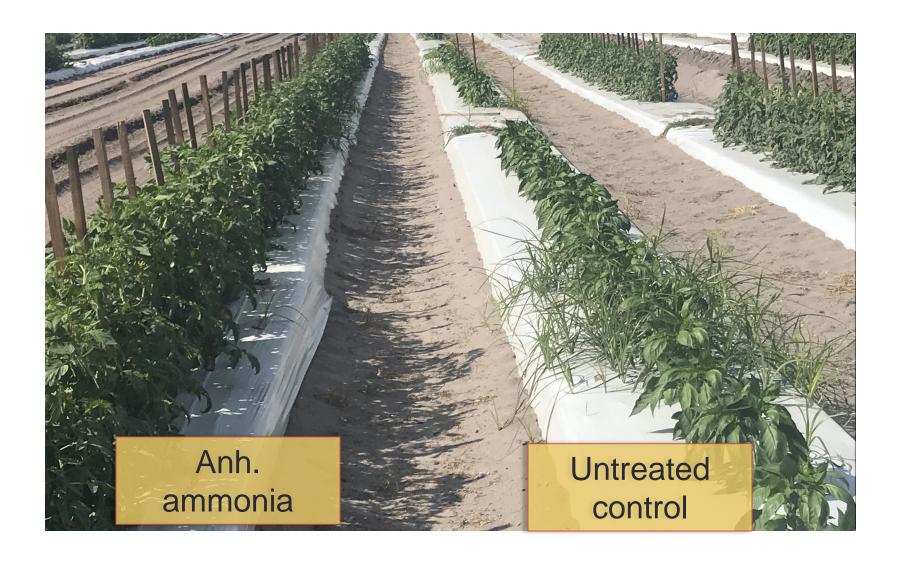
Relatively Quick Gas Off

~10 days from our observations in TIF plastic mulches

Ammonia measurements from plastic mulched beds

 Anhydrous ammonia applied from a bedder before installing plastic (TIF)

Ongoing Project
Immokalee, FL
Tomato and pepper crops
Low and high rate of
application tested



- Nutsedge counts on each beds before harvest

Treatment	No. Nutsedge / 100 ft. bed	
Untreated Control	11.0 ± 7.6	
Pic-Clor 60 / Std rate	2 ± 1.2	
An. Ammonia / Low rate	1 ± 0.9	
An. Ammonia / High rate	1 ± 0.9	

- Replication (n) = 8
- ± Standard Error

- Yield from treatments

Treatment	Fruit weight per plot (lbs.)	
	Tomato	Bell Pepper
Untreated Control	103 ± 6	27 ± 4
Pic-Clor 60 / Std rate	90 ± 6	18 ± 4
An. Ammonia / Low rate	113 ± 3	25 ± 4
An. Ammonia / High rate	107 ± 9	27 ± 5

- 5 plants harvested per plot
- Replication (n) = 8
- ± Standard Error
- 1 harvest for tomato and 2 harvests for pepper

Summary

Summary: Vegetable weed management

POST-herbicide sprays

- Apply before flowering/seeding
- Coverage Spray volume
- Surfactants and additives

PRE-herbicide programs

- Longer duration weed control in row-middles
- Understand the persistence factors
- Crop-safety

Ongoing project

- Anh. Ammonia as alternative fumigant for beds
- Further evaluation in progress

Acknowledgements

Dr. Nathan Boyd

Dr. Peter Dittmar

Dr. Pamela Roberts

& SWFREC Weed Science Team

Thank you...

KNOW YOUR WEEDS

Please visit our

Weed Garden

EDUCATIONAL DISPLAY OF DIFFERENT TYPES OF WEEDS

UNIVERSITY OF FLORIDA SOUTHWEST FLORIDA REC - WEED SCIENCE **Contact**

Ramdas Kanissery

UF/IFAS SWFREC 2685 State Road N Immokalee, FL

Phone: (239) 658-3455 rkanissery@ufl.edu

2685 STATE ROAD 29 N. IMMOXALEE, FL 34142