Best Use of Insecticides to Control Asian Citrus Psyllid

Phil Stansly, SWFREC Immokalee Florida
Reasons to use insecticides for ACP Control

• They work

Reasons to limit insecticide use

• Cost
• Secondary pest outbreaks caused by loss of beneficials
• Insecticide Resistance

How to make them work better and reduce negative impacts?
Getting the most out of insecticides

• **When to spray**
  – Dormant season
  – “On demand”
    • Thresholds, risk/benefit
  – Calendar

• **What to spray**
  – Broad spectrum vs selective
  – Controlling secondary pests
    • Leafminers, mites, scales
  – Rotating Modes of action

• **How to spray**
  – Low Volume vs High Volume
  – Air vs Ground
Management “Program”

Dormant Season:
- Broad-spectrum insecticide to target adults

Spring flush and bloom:
- Movento (pre bloom) Portal, Micromite if needed

Post-bloom:
- Various possibilities if needed
- Neonicotinoid drench for young trees

Summer:
- Relatively low risk. Monitor and spray as needed. Various options.

Fall flush:
- Systemic insecticide if needed

Monitor ACP

Oil Option

<table>
<thead>
<tr>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP</td>
<td>Pyrethroid</td>
<td>OP</td>
<td>Pyrethroid</td>
<td>OP</td>
<td>Pyrethroid</td>
<td>OP</td>
<td>Pyrethroid</td>
<td>OP</td>
<td>Pyrethroid</td>
<td>OP</td>
<td>Pyrethroid</td>
</tr>
</tbody>
</table>
ACP Monitoring System
http://swfrec.ifas.ufl.edu/entlab/

- **Tap Sample**
  - 10 trees per stop

- **Visual inspection**
  - 10 flush per stop
Border areas usually get greening first and often have higher psyllid counts than interior portions of the grove, justifying more frequent border sprays.
Every time you use a Pesticide
You are Selecting for Resistance:

Before pesticide application

After pesticide application

First generation

Later generation
Topical application bioassay

2009

- A droplet of 0.2 µL of technical grade insecticide in acetone was applied on the dorsal side of the adult thorax.

- Acetone alone served as control.

- At each conc. 120 adults treated.

- Mortality counts taken 24 h after treatment. LD$_{50}$ values (95% confidence intervals) calculated by probit analysis.
Insecticide susceptibility of Fort Pierce population

RR = LD$_{50}$ of field pop./LD$_{50}$ of lab pop.

Insecticide susceptibility of Vero Beach population

RR = LD$_{50}$ of field pop./LD$_{50}$ of lab pop.

**Insecticide susceptibility of La Belle population**

\[ RR = \frac{LD_{50} \text{ of field pop.}}{LD_{50} \text{ of lab pop.}} \]

Evidence of Cross Resistance

Insecticide Resistance Management
IRM = IPM + Pesticide Rotation

IPM Control Tactics

- Biological
- Chemical
- Cultural
- Host Plant Resistance
Important to rotate modes of actions!

Insecticide Mode of Action Classification:

**Diversity is a key to successful resistance management**

---

**Introduction**
IRAC promotes the use of Mode of Action (MoA) classification of insecticides as the basis for effective and sustainable insecticide resistance management (IRM). Insecticides are allocated to specific groups based on their target site. Reviewed and re-issued annually, the IRAC MoA classification list provides farmers, growers, advisors, extension staff, consultants and crop protection professionals with a guide to the selection of insecticides or acaricides in IRM programs. Effective IRM of this type preserves the utility and diversity of available insecticides and acaricides.

---

**Effective IRM strategies: Alternations or sequences of MoA**
All effective insecticide (and acaricide) resistance management (IRM) strategies seek to minimise the selection for resistance from any one type of insecticide or acaricide. In practice, alternations or sequences of antioxidants from different MoA groups provide sustainable and effective IRM. This ensures that selection from compounds in the same MoA group is minimised. Applications are often arranged into MoA spray windows or blocks that are defined by the stage of crop development and the biology of the pest(s) of concern. Local expert advice should always be followed with regard to spray windows and timings. Several sprays of a compound may be possible within each spray window but it is generally essential to ensure that successive generations of the pest are not treated with compounds from the same MoA group.

---

**Moulting & Metamorphosis**
- Group 18: Ec dysone agonist / disruptor
  - Tebufenozide
- Group 7: Juvenile hormone mimics
  - Fenoxycarb, Methoprene, etc

**Midgut**
- Group 11: Microbial disruptors of insect midgut membranes
  - Toxins produced by the bacterium *Bacillus thuringiensis* (Bt); Bt sprays and Cry proteins expressed in transgenic Bt crop varieties (specific cross-resistance sub-groups)

**Nervous System**
- Group 1: Acetylcholinesterase (AChE) inhibitors
  - Carbamates and Organophosphates
- Group 2: GABA-gated chloride channel antagonists
  - Cyclodiene and Fiproles
- Group 3: Sodium channel modulators
  - DDT, pyrethrins, pyrethroids
- Group 4: Acetylcholine receptor agonists
  - Neonicotinoids
- Group 5: Acetylcholine receptor modulators
  - Spinosyns
- Group 6: Chloride channel activators
  - Avermectin, Emamectin Benzoate and Milbemycin
- Group 22: Voltage dependent sodium channel blocker
  - Indoxacarb

**Non-specific MoA**
- Group 9: Compounds of non-specific mode of action (selective feeding blockers)
  - Cryolite, Pymetrozine
- Group 10: Compounds of non-specific mode of action (mite growth inhibitors)
  - Clofentezine, Hexythiazox, Etoxazole
- Group 20: Site II electron transport inhibitors
  - Hydramethylnon and Dicofol
- Group 21: Site I electron transport inhibitors
  - Rotenone, METI acaricides

---

**Cuticle Synthesis**
- Groups 15, 16 and 17: Inhibitors of chitin biosynthesis
  - Benzoylureas (Lepidoptera and others), Euprenezim (Homoptera) and Cyromazine (Diptera)

**Metabolic Processes**
- Acting on a wide range of metabolic processes including:
  - Group 12: Inhibitors of oxidative phosphorylation, disruptors of ATP
  - Diazinon & Organotin miticides
  - Group 12: Uncoupler of oxidative phosphorylation via disruption of H proton gradient – Chlorfenapyr

**Non-specific MoA**
- Group 20: Site II electron transport inhibitors
  - Hydramethylnon and Dicofol
- Group 21: Site I electron transport inhibitors
  - Rotenone, METI acaricides
## Citrus Health Management Areas (CHMA's): Guide to developing a psyllid control plan

<table>
<thead>
<tr>
<th>Chemical class (MOA)</th>
<th>Active ingredient</th>
<th>Product</th>
<th>Rate/A</th>
<th>Application methods</th>
<th>REI</th>
<th>PHI</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Organophosphate (1B)</strong></td>
<td>chlorpyrifos</td>
<td>Lorsban</td>
<td>5 pts</td>
<td>Air, lv, ss</td>
<td>5 days</td>
<td>21 days</td>
<td>Consult label for buffering instructions when pH is greater than 7.</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>Sevin XLR</td>
<td>1.5 qts</td>
<td>Air, lv, ss</td>
<td>12 hrs</td>
<td>5 days</td>
<td>Short residual; fresh fruit for export should avoid use due to European MRL issues.</td>
<td></td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Vydate</td>
<td>2 qts</td>
<td>ss</td>
<td>48 hrs</td>
<td>7 days</td>
<td>Short residual; fresh fruit should avoid use due to European MRL issues.</td>
<td></td>
</tr>
<tr>
<td>Aldicarb</td>
<td>Temik 15 G</td>
<td>33 lbs</td>
<td>Soil</td>
<td>48 hrs</td>
<td>0; 30 days (lemons)</td>
<td>Slow acting on adult psyllids; product scheduled to be cancelled Dec 31, 2011.</td>
<td></td>
</tr>
<tr>
<td>Dimethoate</td>
<td>Dimethoate 4E</td>
<td>1 pt</td>
<td>Air, lv, ss</td>
<td>10 days</td>
<td>15-45 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malathion</td>
<td>Malathion 5</td>
<td>2 pts</td>
<td>Air, lv, ss</td>
<td>12 hrs</td>
<td>7 days</td>
<td>Consult label for buffering instructions when pH is greater than 7.</td>
<td></td>
</tr>
<tr>
<td>Phosmet</td>
<td>Imidan</td>
<td>1.0 lb</td>
<td>Air, lv, ss</td>
<td>24 hrs</td>
<td>7 days</td>
<td>Consult label for buffering instructions when pH is greater than 7.</td>
<td></td>
</tr>
<tr>
<td><strong>Pyrethroids (3)</strong></td>
<td>Fenpropathrin</td>
<td>Danitol 2.4EC</td>
<td>1 pt</td>
<td>Air, lv, ss</td>
<td>24 hrs</td>
<td>1 day</td>
<td>Important to minimize use of foliar applications to prevent insecticide resistance development to maintain use for young tree care.</td>
</tr>
<tr>
<td>Zeta-cypermethrin</td>
<td>Mustang</td>
<td>4.3 fl oz</td>
<td>Air, lv, ss</td>
<td>12 hrs</td>
<td>1 day</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Neonicotinoids (4)</strong></td>
<td>Imidacloprid</td>
<td>Admire Pro 4.6F</td>
<td>7-14 fl oz</td>
<td>Soil drench</td>
<td>12 hrs</td>
<td>0 day</td>
<td>Apply with oil as directed. Also provides control of leafminer and rust mites.</td>
</tr>
<tr>
<td></td>
<td>Provado 1.6F</td>
<td>10-20 fl oz</td>
<td>ss</td>
<td>12 hrs</td>
<td>0 day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>Actara 25 WG</td>
<td>4.0-5.5 fl oz</td>
<td>ss</td>
<td>12 hrs</td>
<td>0 day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>Platinum 75 SG</td>
<td>1.83-3.67 fl oz</td>
<td>Soil drench</td>
<td>12 hrs</td>
<td>0 day</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Spinosyns (5)</strong></td>
<td>Spinetoram</td>
<td>Delegate WG</td>
<td>4 oz</td>
<td>lv, ss</td>
<td>4 hrs</td>
<td>1 day</td>
<td>Apply with 2% oil v/v. Also provides control of leafminer.</td>
</tr>
<tr>
<td><strong>Products that control all psyllid lifestages (eggs, nymphs and adults)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Products that control psyllid immature stages only (eggs and/or nymphs)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Avermectins (6)
- **abamectin**: Agri-mek 0.15 EC, 10 fl oz, lv, ss, 12 hrs, 7 days
  - Apply with oil as directed. Also provides control of leafminer and rust mites.

### Benzoylureas (Chitinase inhibitors) (15)
- **diflubenzuron**: Micromite 80 WGS, 6.25 oz, lv, ss, 12 hrs, 21 days
  - Apply with 2% oil v/v. Also provides control of leafminer and rust mites.

### METI insecticides (21A)
- **fenpyroximate**: Portal, 4.0 pts, ss, 12 hrs, 14 days
  - Provides suppression of rust mites.

### Petroleum distillates
- **petroleum oil**: numerous, 2% v/v, ss, 12 hrs, 0 days
  - Provides suppression of leafminer and rust mites.

### Tetramic acid derivatives (23)
- **spirotetramat**: Movento 240 SC, 10 fl oz, ss, 24 hrs, 1 day
  - Systemic activity provides extended residual control of nymphal populations. Must use 3% oil v/v or other approved surfactant.
# Insecticides used by SW Florida Growers (% at Least Once)

<table>
<thead>
<tr>
<th>Product</th>
<th>MOA</th>
<th><a href="http://www.irac-online.org">www.irac-online.org</a></th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mustang</td>
<td>3A - Pyrethroid)</td>
<td>67%</td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td>Abamectin</td>
<td>6 - Avermectin</td>
<td>62%</td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td>Danitol</td>
<td>3A - Pyrethroid)</td>
<td>46%</td>
<td>31%</td>
<td></td>
</tr>
<tr>
<td>dimethoate</td>
<td>1B - Organophosphate</td>
<td>42%</td>
<td>38%</td>
<td></td>
</tr>
<tr>
<td>chlorpyrifos</td>
<td>1B - Organophosphate</td>
<td>42%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Temik</td>
<td>1A - Carbamate</td>
<td>38%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>carbaryl</td>
<td>1A - Carbamate</td>
<td>29%</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>Delegate</td>
<td>5 - Spinosyn</td>
<td>29%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>imidaclorpid</td>
<td>4A - Neonicotinoid</td>
<td>25%</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>oil</td>
<td>Unclassified</td>
<td>25%</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>Micromite</td>
<td>15 - Benzoylurea</td>
<td>17%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Imidan</td>
<td>1B - Organophosphate</td>
<td>17%</td>
<td>56%</td>
<td></td>
</tr>
<tr>
<td>Movento</td>
<td>23 – Tetronic acid</td>
<td>8%</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>malathion</td>
<td>1B - Organophosphate</td>
<td>8%</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>Actara</td>
<td>4A - Neonicotinoid</td>
<td>4%</td>
<td>19%</td>
<td></td>
</tr>
</tbody>
</table>

Important to rotate modes of actions!
<table>
<thead>
<tr>
<th>Pesticide active ingredient</th>
<th>Product Brand Name Examples</th>
<th>Restricted entry interval (REI)</th>
<th>Pre-harvest interval (PHI)</th>
<th>Mode of Action¹</th>
<th>Psyllid</th>
<th>Leafminer</th>
<th>Rust Mites</th>
<th>Spider Mites</th>
<th>Root Weevil Adults</th>
<th>Scale Insects</th>
<th>Mealybugs</th>
<th>Effects on natural enemies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abamectin + oil</td>
<td>Agri-mek 0.15EC</td>
<td>12 hours</td>
<td>7 days</td>
<td>6</td>
<td>++</td>
<td>+++-R</td>
<td>+++-R</td>
<td>+</td>
<td>+ (oil)</td>
<td>+(oil)</td>
<td>+(oil)</td>
<td>medium</td>
</tr>
<tr>
<td>Aldicarb</td>
<td>Temik 15G</td>
<td>48 hours</td>
<td>0; 30 days (lemons)</td>
<td>1A</td>
<td>+++-R</td>
<td>-</td>
<td>+++-R</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>low</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>Sevin XLR Plus</td>
<td>12 hours</td>
<td>5 days</td>
<td>1A</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+++-R</td>
<td>+++-R</td>
<td>+</td>
<td>high</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>Lorsban 4E</td>
<td>5 days</td>
<td>21 days</td>
<td>1B</td>
<td>+++-R</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+++-R</td>
<td>+++-R</td>
<td>high</td>
</tr>
<tr>
<td>Diflubenzuron</td>
<td>Micromite 80WGS</td>
<td>12 hours</td>
<td>21 days</td>
<td>15</td>
<td>++</td>
<td>+++-R</td>
<td>+++-R</td>
<td>-</td>
<td>+++-R</td>
<td>-</td>
<td>-</td>
<td>low</td>
</tr>
<tr>
<td>Dimethoate</td>
<td>Dimethoate 4E</td>
<td>10 days</td>
<td>15-45 days</td>
<td>1B</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>+++-R</td>
<td>+</td>
<td>high</td>
</tr>
<tr>
<td>Fenbutatin oxide</td>
<td>Vendex 50WP</td>
<td>48 hours</td>
<td>7 days</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>+++-R</td>
<td>+++-R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>low</td>
</tr>
<tr>
<td>Fenpropathrin</td>
<td>Danitol 2.4EC</td>
<td>24 hours</td>
<td>1 day</td>
<td>3</td>
<td>+++-R</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+++-R</td>
<td>-</td>
<td>+</td>
<td>high</td>
</tr>
<tr>
<td>Imidacloprid (soil)</td>
<td>Admire Pro</td>
<td>12 hours</td>
<td>0</td>
<td>4</td>
<td>+++-R</td>
<td>+++-R</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>low</td>
</tr>
<tr>
<td>Imidacloprid (foliar)</td>
<td>Provado 1.6F</td>
<td>12 hours</td>
<td>0</td>
<td>4</td>
<td>+++-R</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>medium</td>
<td>+</td>
<td>medium</td>
</tr>
<tr>
<td>Methoxyfenozide</td>
<td>Intrepid 2F</td>
<td>4 hours</td>
<td>1 day</td>
<td>18</td>
<td>-</td>
<td>+++-R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>low</td>
</tr>
<tr>
<td>Petroleum oil</td>
<td>numerous</td>
<td>12 hours</td>
<td>0</td>
<td>NR</td>
<td>+</td>
<td>++-R</td>
<td>++-R</td>
<td>++</td>
<td>+(eggs)</td>
<td>++-R</td>
<td>+</td>
<td>low</td>
</tr>
<tr>
<td>Phosmet</td>
<td>Imidan 70W</td>
<td>24 hours</td>
<td>7 days</td>
<td>1B</td>
<td>+++-R</td>
<td>-</td>
<td>+</td>
<td>?</td>
<td>+++-R</td>
<td>?</td>
<td>?</td>
<td>medium/high</td>
</tr>
<tr>
<td>Pyridaben</td>
<td>Nexter Miticide</td>
<td>12 hours</td>
<td>7 days</td>
<td>21</td>
<td>-</td>
<td>?</td>
<td>+++-R</td>
<td>+++-R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>high</td>
</tr>
<tr>
<td>Spinosad</td>
<td>Spintor 2SC</td>
<td>4 hours</td>
<td>1 day</td>
<td>5</td>
<td>-</td>
<td>+++-R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>low</td>
</tr>
<tr>
<td>Spinetoram</td>
<td>Delegate WG</td>
<td>4 hours</td>
<td>1 day</td>
<td>5</td>
<td>+++-R</td>
<td>+++-R</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Spirodiclofen</td>
<td>Envidor 2SC</td>
<td>12 hours</td>
<td>7 days</td>
<td>23</td>
<td>-</td>
<td>-</td>
<td>+++-R</td>
<td>+++-R</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>low</td>
</tr>
<tr>
<td>Sulfur</td>
<td>numerous</td>
<td>12 hours</td>
<td>0</td>
<td>NR</td>
<td>-</td>
<td>-</td>
<td>+++-R</td>
<td>+++</td>
<td>-</td>
<td>?</td>
<td>?</td>
<td>high (short term)</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>Actara 25 WG</td>
<td>12 hours</td>
<td>0</td>
<td>4</td>
<td>+++-R</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>medium</td>
<td>medium</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>Platinum 75 SG</td>
<td>12 hours</td>
<td>0</td>
<td>4</td>
<td>+++-R</td>
<td>+++-R</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>low</td>
</tr>
<tr>
<td>Zeta-cypermethrin</td>
<td>Mustang Insecticide</td>
<td>12 hours</td>
<td>1 day</td>
<td>3</td>
<td>+++-R</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>+++</td>
<td>?</td>
<td>?</td>
<td>high</td>
</tr>
</tbody>
</table>

¹Mode of action class for citrus pesticides from the Insecticide Resistance Action Committee; NR = no resistance potential (R) = product recommended for control of pest in Florida Citrus Pest Management Guide

(++++) = good control of pest  (++) = short-term control of pest  (+) = low levels of pest suppression  (-) = no observed control of pest  (?) = insufficient data available

Revised August 2010

Quick Reference Guide to Citrus Insecticides and Miticides
M.E. Rogers, P. A. Stansly, L. L. Stelinski and J. D. Yates

ENY-854  Products recommended in the Florida Citrus Pest Management Guide and their effects on selected pests and their natural enemies.
<table>
<thead>
<tr>
<th>Month</th>
<th>One</th>
<th>Two</th>
<th>Four</th>
<th>Five</th>
<th>Seven</th>
<th>Eleven</th>
<th>Other pests Controlled</th>
<th>MOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>Pyrethroid</td>
<td>Pyrethroid</td>
<td>Pyrethroid</td>
<td>Pyrethroid</td>
<td>Pyrethroid</td>
<td>Pyrethroid</td>
<td>weevils</td>
<td>3</td>
</tr>
<tr>
<td>Mar</td>
<td>Micromite[^]</td>
<td>Micromite[^]</td>
<td>Leafminer</td>
<td>Rustmite</td>
<td>Weevils</td>
<td>15</td>
<td>leafminer rustmite weevils</td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td>Oil</td>
<td>Oil</td>
<td>Oil</td>
<td>Oil</td>
<td>Delegate[^]</td>
<td>Delegate[^]</td>
<td>Carbaryl</td>
<td>weevils</td>
</tr>
<tr>
<td>May</td>
<td>Oil</td>
<td>Oil</td>
<td>Oil</td>
<td>Oil</td>
<td>Oil</td>
<td>Oil</td>
<td>Delegate[^]</td>
<td>Leafminer</td>
</tr>
<tr>
<td>Jun</td>
<td>Agriflex[^] or Delegate[^]</td>
<td>Agriflex[^] or Delegate[^]</td>
<td>Agriflex[^]</td>
<td>Agriflex[^]</td>
<td>Neonic</td>
<td>4, 5</td>
<td>Leafminer rustmite</td>
<td>(6,4)</td>
</tr>
<tr>
<td>Jul</td>
<td>Oil</td>
<td>Oil</td>
<td>Oil</td>
<td>Oil</td>
<td>Oil</td>
<td>Oil</td>
<td>Abamectin[^]</td>
<td>Leafminer rustmite</td>
</tr>
<tr>
<td>Aug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP</td>
<td>1B</td>
</tr>
<tr>
<td>Sep</td>
<td></td>
<td>Portal[^]</td>
<td>Portal[^]</td>
<td>Portal[^]</td>
<td></td>
<td></td>
<td>Spidermites rustmite</td>
<td>21</td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pyrethroid</td>
<td>Weevils</td>
<td>3</td>
</tr>
<tr>
<td>Nov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td>OP</td>
<td>OP</td>
<td>OP</td>
<td>OP</td>
<td>OP</td>
<td>OP</td>
<td></td>
<td>1B</td>
</tr>
</tbody>
</table>

*Generally applied with oil or another surfactant
^ Primarily for control of nymphs
Program for Resets

• THE GOOD NEWS: Using drenches of imidacloprid, thiamethoxam (Platinum) and clothianidin (Belay) you should be able to get 2 years control in solid sets, longer in resets. Cyazapyr (MOA 28) coming soon (hopefully).

• THE BAD NEWS: All 3 products available today are neonicotinoids (MOA 4) with the same MOA.

• Alternate soil applications of these products with sprays of insecticides with different MOAs.

• Limit sprays of imidacloprid, Actara or Agriflex in older blocks to at most one per year.
Aerial vs. Ground 2008

- 150 ac., 16 treatments
- 20 trees/plot

- Aerial Applications: 10 gpa
  - 10 treatments
  - 12 acres per plot

- Ground Applications: 125 gpa
  - 5 treatments
  - 3.8 acres per plot
Imidan good by air and speed sprayer, Delegate and Provado only by speed sprayer for this summer application
Aerial vs. Ground July 2009

• 576 Acres, 8 treatments
• 50 trees/plot

• Aerial Applications: 125 gal/ac.
  – 3 treatments
  – 48 acres per plot

• Ground Applications: 10 gal/ac.
  – 3 treatments
  – 12 acres per plot

• Controls
  – 2 controls
  – 6 acres per plot
All treatments better by speed sprayer for this summer application
DPI-CHRP Field Survey Results:
Average ACP Adults per 10 Tap Samples
Before and After Dormant Sprays

Aerial sprays worked as well as ground applications during dormant season
Low Volume machines

- Prices range between $13-15K
- Limited to low volume applications.
- Spray at night (wind 0-5 mph)
Mini sprayers

- Price ranges between 28-40K
- Have the ability to go low or high volumes which increases flexibility of machine
- Can handle a little wind
- Needs a good operator.

Ryan Attwood
### Products labeled for application at reduced volume either by ground or aerial application

<table>
<thead>
<tr>
<th>Product</th>
<th>EPA Reg. #</th>
<th>Restricted entry interval (REI)</th>
<th>Pre-harvest interval (PHI)</th>
<th>Product Rate / A</th>
<th>Minimum Spray Volume / A</th>
<th>Product Rate / A</th>
<th>Minimum Spray Volume / A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agri-mek 0.15 EC</td>
<td>100-898</td>
<td>12 hours</td>
<td>7 days</td>
<td>10-20 fl oz</td>
<td>Sufficient coverage</td>
<td>5 - 20 fl oz</td>
<td>10 gallons</td>
</tr>
<tr>
<td>Danitol 2.4 EC</td>
<td>59639-35 SLN FL-090003</td>
<td>1 day</td>
<td>1 day</td>
<td>16-21 fl oz</td>
<td>2 gallons</td>
<td>16 - 21 fl oz</td>
<td>5 gallons</td>
</tr>
<tr>
<td>Delegate WG</td>
<td>62719-541 SLN FL-090009</td>
<td>4 hours</td>
<td>1 day</td>
<td>3-6 oz</td>
<td>2 gallons</td>
<td>3 - 6 oz</td>
<td>10 gallons</td>
</tr>
<tr>
<td>Dimethoate 4E</td>
<td>34704-207-67760 SLN FL-090009</td>
<td>2 days</td>
<td>15-45 days</td>
<td>0.5-1 pts</td>
<td>5 gallons</td>
<td>1 - 2 qts</td>
<td>5 gallons</td>
</tr>
<tr>
<td>Lorsban 4E</td>
<td>62719-220</td>
<td>5 days</td>
<td>21-35 days</td>
<td>2-12 pts</td>
<td>10 gallons</td>
<td>2 - 12 pts</td>
<td>2 gallons</td>
</tr>
<tr>
<td>Malathion 5</td>
<td>9779-5</td>
<td>12 hours</td>
<td>7 days</td>
<td>1.25 - 2 pts</td>
<td>3 gallons</td>
<td>1.25 - 2 pts</td>
<td>1 gallon</td>
</tr>
<tr>
<td>Micromite 80 WGS</td>
<td>400-487 SLN FL-090010</td>
<td>12 hours</td>
<td>21 days</td>
<td>6.25 oz</td>
<td>2 gallons</td>
<td>6.25 oz</td>
<td>5 gallons</td>
</tr>
<tr>
<td>Mustang Insecticide</td>
<td>279-3126 SLN FL-090011</td>
<td>12 hours</td>
<td>1 day</td>
<td>4.3 fl oz</td>
<td>2 gallons</td>
<td>4.3 fl oz</td>
<td>10 gallons</td>
</tr>
<tr>
<td>Sevin XLR</td>
<td>264-333</td>
<td>12 hours</td>
<td>5 days</td>
<td>1.5 - 3 qts</td>
<td>Sufficient coverage</td>
<td>1.5 - 3 qts</td>
<td>10 gallons</td>
</tr>
</tbody>
</table>

1. Aerial applications of Agri-mek 0.15EC are only labeled for citrus leafminer control.
2. The use of spray adjuvants with Danitol 2.4EC is prohibited by label.
3. Aerial applications of Micromite 80WGS cannot be made within 1,000 feet of bodies of water.
4. Additional dimethoate products with similar use patterns may be available.

Additional citrus pest management information can be found in the Florida Citrus Pest Management Guide available online at http://www.crec.ifas.ufl.edu/extension/pest/index.htm

---

2. Michael E. Rogers, assistant professor, Department of Entomology, Citrus REC, Lake Alfred, Florida; Philip A. Stancly, professor, Department of Entomology, Southwest Florida REC, Lakeland, Florida; Lukasz L. Stelinski, assistant professor, Department of Entomology, Citrus REC, Lake Alfred, Florida; Jamie D. Yates, coordinator for canker and greening extension education, Citrus REC, Lake Alfred, Florida; Cooperative Extension Service, Institute of Food and Agricultural Sciences; University of Florida; Gainesville, FL 32611.

The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide educational, training, and other services to any individual with no discrimination with respect to race, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. For more information on obtaining other extension publications, contact your county Cooperative Extension service. U.S. Department of Agriculture. Cooperative Extension Service, University of Florida, IFAS, Florida A. & M. University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Millie Ferrer, interim Dean.
Timing: Effectiveness of the dormant spray by LV

With pre-flush application, LV equivalent to HV when pyrethroid is applied to every row

L. Stelinski
**LV vs. Conventional Insecticide + Oil**

- 38 acres, 5 treatments
  - Conventional 116 gal/ac.
    - Every row
    - Dimethoate 4EC @ 24 fl oz/ac
    - Delegate WG (spinetoram) @4 oz/ac
    - Each + 2 gal oil
  - LV (London Fogger model 18-20) 2 gal/ac.
    - Every other row
    - Dimethoate 4EC @ 24 fl oz/ac
    - Delegate WG (spinetoram) @4 oz/ac Control
    - Suspended in 1 qt + 1.75 gal oil
- Untreated
LV vs. Conventional Insecticide + Oil

Week After Application
Effect of Product and Spray Volume

SWFREC: 30 Sep 2010

http://www.imok.ufl.edu/entomology/

Low volume sprays of Movento worked well
LV 435 Horticultural oil
(2 gal./ac.)

- 67 ac. 3 treatments
- 20 trees / plot
- 3 treatments
  - Proptec P400D
  - London Fogger model 18-20
  - Control
- Applications every 2 to 4 weeks.
LV 435 Horticultural oil (2 gal/ac neat)

Proptec appeared to be better although populations were low

\[ CID = \sum_{\text{day}=i=1}^{x} \text{No. ACP}_i \times \Delta_i^{i-1} \]
Airblast vs LV Air and Ground

- Standard Airblast works best in many but not all applications
- LV applications more subject to environmental effects
- Some materials work better with LV than others
- Advantages of rapid application and correct timing may give advantage to LV air or ground application
- We have a lot to learn about how to use LV
Acknowledgements

• Citrus Research and Development Foundation ($$)
• Barron Collier Limited, Bob Paul Citrus, Moreno Farms.
• SWFREC Entomology Team