Reitz, S. R. **Biology and ecology of the Western Flower Thrips (Thysanoptera: Thripidae): The making of a pest.**

In the past 30 years, the western flower thrips has become one of the most important agricultural pests worldwide. Certain biological attributes of this insect predispose it to be a direct pest across a wide range of crops. In addition to the direct damage it can cause, this species is an efficient vector of *Tomato spotted wilt virus* and other *Tospoviruses*. This review addresses questions regarding the biological and ecological attributes of the western flower thrips that enable it to become a significant pest and make it so difficult to manage. Among these important life history traits are the western flower thrips’ polyphagy and tendency to reside and feed in concealed areas of flowers and fruits. Consequently, large populations can develop and disperse into crops. The larvae and adults feed in a similar manner and can share the same host plant resources. The relatively short generation time and haplodiploid sex determination also contribute to the pest status of this species. These life history traits interact in complex ways to make the western flower thrips one of the world’s most significant pests.

ORAL PRESENTATIONS

Boykin L. M., P. D. Barro, D. G. Hall, W. B. Hunter & R.G. Shatters, Jr. **Bayesian phylogenetic analysis of mitochondrial COI DNA sequence groups of Asian Citrus Psyllid, Diaphorina citri Kuwayama, the vector for citrus greening disease, Huanglongbing reveals two major phylogenetic groups.**

We utilized a Bayesian phylogenetic technique to resolve global relationships of *Diaphorina citri*. New mitochondrial primers were designed from an EST library and an 800 base pair region of COI amplified and sequenced. The dataset consisted of 281 individual psyllids from around the world. There are several well-supported clades within the phylogeny. The global relationships will be discussed including what geographic region appears to be the source of the introduction into Florida.

Cherry, R. **The effect of reduced risk herbicide on Fall Armyworm and Tropical Sod webworm.**

Reduced risk herbicide is a petroleum based herbicide to be released for broadleaf weed control in St. Augustine grass. Laboratory and field data show that the herbicide also helps reduce some lepidopteran populations.

Cherry, R., P. Stansly, J. Sampson & A. Wilson. **Abundance and spatial distribution of wireworms in Florida sugarcane fields on muck versus sandy fields.**

There were no significant differences in densities of *Glyphonyx bimarginatus*, *Melanotus communis*, or total wireworms of all species in muck versus sand fields. Significantly more *Conoderus* spp. were found in sandy fields and significantly more *Ischiodonatus* sp. were found in muck fields.

Duncan, R. E., J. E. Peña, W. Roltsch, R. Gagne, T. Henry & C. Holguin. **Potential of exotic and resident biological control agents of the avocado lace bug, Pseudacysta perseae (Heteroptera: Tingidae) in Florida.**