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Abstract The infection density of symbionts is among the
major parameters to understand their biological effects in
host–endosymbionts interactions. Diaphorina citri harbors
two bacteriome-associated bacterial endosymbionts
(Candidatus Carsonella ruddii and Candidatus Profftella
armatura), besides the intracellular reproductive parasite
Wolbachia. In this study, the density dynamics of the three
endosymbionts associated with the psyllid D. citri was inves-
tigated by real-time quantitative PCR (qPCR) at different
developmental stages. Bacterial density was estimated by
assessing the copy number of the 16S rRNA gene for
Carsonella and Profftella, and of the ftsZ gene for
Wolbachia. Analysis revealed a continuous growth of the
symbionts during host development. Symbiont growth and
rate curves were estimated by the Gompertz equation, which
indicated a negative correlation between the degree of symbi-
ont–host specialization and the time to achieve the maximum
growth rate (t*).Carsonella densities were significantly lower
than those of Profftella at all host developmental stages ana-
lyzed, even though they both displayed a similar trend. The

growth rates of Wolbachia were similar to those of
Carsonella, but Wolbachia was not as abundant. Adult males
displayed higher symbiont densities than females. However,
females showed a much more pronounced increase in symbi-
ont density as they aged if compared to males, regardless of
the incorporation of symbionts into female oocytes and egg
laying. The increased density of endosymbionts in aged adults
differs from the usual decrease observed during host aging in
other insect–symbiont systems.

Introduction

Symbiosis commonly occurs in insects and more than 10% of
insects depend on the interactions with intracellular mutualis-
tic symbionts for their development [1–3]. Symbiosis is based
mainly on metabolic innovations related to ecological advan-
tages obtained by the host, such as the supplementation of
missing or insufficient nutrients in the host diet, tolerance to
stress factors, and increased host plant use due to metabolic
compensation [1, 4–6].

Intracellular symbionts can be functionally and phyloge-
netically distinguished as obligate (primary) or facultative
(secondary) based on the degree of co-evolution and co-
dependency, specialization of their genome, and location in
the host organism [2, 6, 7]. Obligate mutualistic symbionts are
essential to the host, with which they have a high degree of co-
speciation and dependence as a consequence of a shared
evolutionary history. They are vertically transferred to the host
progeny through transovarial transmission [2, 6, 8, 9]. On the
other hand, facultative symbionts have a more recent history
of association, establishing diverse interactions that may or
may not contribute to host nutrition and tolerance to stress
factors, and affect host fitness in several ways [4, 10, 11]. An
example of this is the intracellular facultative symbiont
Wolbachia, which is widely distributed among arthropods
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and is better known by inducing several reproductive pheno-
types (male feminization, parthenogenesis, male killing, and
cytoplasmic incompatibility) [12, 13]. But many recent re-
ports have also demonstrated the role this symbiont may have
on the host immune responses against microbial pathogens
[14], tolerance to stress factors [15], nutritional supplementa-
tion [16], and host fecundity and fertility [17, 18]. However,
this symbiotic association may also have adaptive costs yield-
ing short-lived and less fecund hosts [19, 20].

Primary symbionts are harbored within specialized host
cells (bacteriocytes), which can be organized in more complex
tissues, forming the bacteriome [2]. Depending on the host
species, the bacteriome may harbor one or more symbionts
specifically arranged in the cytoplasm of the bacteriocytes or
in the syncytium of the bacteriome [2, 21, 22]. This type of
endosymbiotic association is maintained across generations
through transovarial transmission, in which part of the free
symbionts or intact bacteriocytes present in the maternal
bacteriome migrate to the ovaries, where they are deposited
at various stages of oogenesis depending on the host [23–26].
As a consequence of this process of vertical transmission, only
part of the maternal symbiotic content is allocated to the
progeny [9, 24, 26]. Thus, the population of symbionts suffers
a bottleneck effect in the process of transmission to the off-
spring [9, 27], accentuating the processes of genetic deterio-
ration and specialization of the symbiont [28, 29].

Symbiont density may be influenced by factors such as
temperature [30, 31], age [32, 33], host gender [13], reproduc-
tive cycle [34], polymorphism [35, 36], larval density [37],
competition among symbionts [38], location, and host immune
response [39, 40], which directly or indirectly affect host fit-
ness. Management of chronic infections with endosymbionts
may be achieved either by specific bacterial adaptations [9, 16,
41–45] or by host modulation of the innate defense mecha-
nisms against its microbial partners [39, 45, 46]. Even in those
cases in which mutual speciation has led to the integration of
endosymbionts as a complementary source of host defense
(e.g., against pathogens and predators) [4, 11, 47, 48], insect
host still control endosymbiont proliferation in their tissues [39,
46, 49–51]. In most cases, the mechanisms involved in symbi-
ont control are still unknown, but they may involve the synthe-
sis of antimicrobial peptides [46] or molecules involved in
controlling symbiont cell division and metabolism [51] or rely
on the control of the host immune response elicitation [39]. In
addition to the host control on symbiont proliferation, co-
infections can also lead to symbiont–symbiont interactions that
affect symbiont infection density [38].

The Asian citrus psyllid Diaphorina citri is a most widely
distributed vector of the Huanglongbing-causing bacteria, a
major citrus disease. This psyllid has a bilobed, typical
bacteriome in which two main bacterial symbionts are har-
bored either in the syncytium or in the surrounding uninucle-
ate bacteriocytes [2, 21, 24]. The bacteriocytes are inhabited

by Candidatus Carsonella ruddii, whereas the syncytium by
Candidatus Profftella armatura [2, 47]. Additionally, psyllids
may also support a number of secondary symbionts, including
the intracellular facultative symbiont Wolbachia [52]. We
demonstrate here how the population density of the three
major symbionts associated with D. citri change as the host
develops by assessing the number of copies of the 16S ribo-
somal RNA (rRNA) gene of the symbionts associated with the
bacteriome (Carsonella and Profftella) and the ftsZ gene of the
Wolbachia using real-time quantitative PCR (qPCR).

Methods

Insect Rearing

The insects used in the experiments were obtained from a stock
lab population ofD. citri kept under controlled conditions (28±
2 °C; 60±10 % RH; 14 h photophase) on the orange jasmine
Murraya exotica (Rutaceae) as the host plant [53].

Samplings

Symbiont density was assessed at different ages of the egg,
nymphal, and adult stages of D. citri. Eggs were collected at
three stages of the embryonic development: early (egg-I=0–
10 h old), intermediate (egg-II=48–56 h old), and late stage
(egg-III=72–84 h old). The five nymph stadia (N1, N2, N3,
N4, and N5) were sampled on their first day of development,
i.e., just after hatching (for the first instar) or immediately after
ecdysis (for the remaining instars). Male and female adult
samplings were also subdivided into three distinct physiolog-
ical periods: pre-reproductive (0–24 h; adult-I), reproductive
(10–25 days; adult-II), and post-reproductive (25–35 days;
adult-III) based on the morphology of their spermatheca [54]
and on their reproductive behavior [55].

Five-day-old adults at a 1:1 sex ratio were offered to the
host plant in cages (65×65×40 cm) and allowed to lay eggs
for 4 h under the same rearing conditions earlier mentioned.
Adults were then removed and infested plants were main-
tained under controlled conditions for further sampling of
the desired stage of development. The collected samples were
fixed in absolute ethanol and stored at 4 °C until genomic
DNA (gDNA) extraction.

Genomic DNA Extraction

Total DNA extraction was performed in groups containing the
same amount of specimens to reduce possible variations in the
efficiency of the extraction method. The extraction of gDNA
from eggs (n=100 eggs/embryonic stage/biological replicate),
nymphs (for N1, N2, and N3, n=100 specimens/stage/biolog-
ical replicate; for N4 and N5, n=30 specimens/stage/
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biological replicate), and adults (n=30 adults/sex/age/biolog-
ical replicate) of D. citri followed by Gilbert et al. [56].
Samples were macerated and incubated in the digestion buffer
(3 mM CaCl2, 2 % SDS, 40 mM dithiothreitol, 20 mg/mL
proteinase K, 100 mM Tris buffer, pH 8.0, 100 mMNaCl) for
20 h. After incubation, one volume of phenol (pH 7.8) was
added, samples were vortexed, and centrifuged for collection
of the gDNA-containing phase. The same procedure was
repeated using an equivalent volume of chloroform instead
of phenol. The recovered gDNA was precipitated using
isopropanol:sodium acetate (volume ratio of 0.7:0.1) added
with 1 μL of glycogen (20 mg/mL; Thermo Scientific
#R0561) for 30 min at −80 °C and then centrifuged and
washed in 85 % ethanol. The gDNA pellet was dried using a
SpeedVac machine for 15 min and resuspended in TE buffer
(10 mM Tris, pH 8.0, 1 mM EDTA) after 30 min at 37 °C.
gDNA concentration and quality were assessed on a
Nanodrop 2000/2001 spectrophotometer (Thermo Scientific)
and by 0.8 % agarose gel electrophoresis using Tris-acetate-
EDTA (TAE) (40 mM Tris-acetate, 1 mM EDTA, pH 7.2)
buffer at a constant voltage (100 V). Only samples with high-
quality gDNA were used in qPCR analysis with a user-
designed set of specific primers (Table 1). The specific
primers for each symbiont were designed using the
OligoPerfect™ Designer software (Invitrogen) (http://tools.
invitrogen.com/content.cfm?pageID=9716), and quality
parameters (dimerization, hairpin, and melting temperature)
were checked using the OligoCalc tools (http://www.basic.
northwestern.edu/biotools/oligocalc.html). The primers were
designed to target the 16S rRNA gene sequences of
Carsonella [57] and Profftella (Salvador and Cônsoli,
unpublished data—GenBank accession number: EU570830.
1), and the ftsZ gene of Wolbachia [58] (Table 1).

The amount of gDNA per individual (ng/insect-Δeq) was
used to calculate the copy number of each symbiont.

Real-Time Quantitative PCR Analysis

The target genes selected for each symbiont were amplified and
the obtained PCR products were purified and inserted into the
pGEM®-TEasyVector System (Promega) and used to transform
OneShot® TOP10 (Invitrogen) highly competent cells, which
were grown in an Luria-Bertani (LB) culture medium

supplemented with 100 μg/mL ampicillin and 5-bromo-4-
chloro-3-indolyl-β-D-galactopyranoside (X-GAL), following
the manufacturer recommendations. Positive clones were isolat-
ed, cultivated in LB liquid medium supplemented with 100 μg/
mL ampicillin, and subjected to plasmid extraction using the
alkaline lysis method [59].

The obtained plasmids were subjected to PCR amplifica-
tion using the specific primer sets developed for each target
symbiont in a thermocycler set at 95 °C for 5 min (1 cycle);
95 °C for 45 s, 55 °C for 30 s, 72 °C for 45 s (40 cycles); 72 °C
for 5 min (final extension), followed by verification of the
insert size on a 1 % agarose gel electrophoresis as earlier
described. Plasmids containing the correct insert size were
used to produce a dilution standard curve. A series of six
dilutions containing 20 ng/μL–6.4 pg/μL of plasmid + insert
was amplified in triplicate using optimized cycling conditions
for each primer set on a StepOne (Applied Biosystems)
thermocycler as follows: DcMycF/DcMycR (Carsonella)
and DcftsZF/DcftsZR (Wolbachia)—50 °C for 2 min, 95 °C
for 10 min, 45 cycles at 95 °C for 15 s, and 58 °C for 30 s,
followed by a melting curve at 95 °C for 15 s, 60 °C for 1 min,
and 95 °C for 15 s; and DcSynF/DcSynR (Profftella)—50 °C
for 2 min, 95 °C for 10 min, 45 cycles at 95 °C for 15 s, and
60 °C for 15 s, followed by a melting curve at 95 °C for 15 s,
60 °C for 1 min, and 95 °C for 15 s.

The number of copies (N) of the target genes per microliter
was determined using the following equation [60]:

N ¼ X g=μLDNA
sizeof theclone inbp� 660

6:022� 1023

where

X Quantity of DNA in g/μL
Clone Plasmid + insert
660 g/mol Average molecular weight of 1 DNA bp
6.023×
1023

Number of molecules in 1 mol (Avogadro
constant)

The symbiont density was obtained as a measure of the
number of copies of the selected target gene using the Ct values
obtained for each sample against the standard curve [61] pro-
duced for each target gene using the tools available in the qPCR
StepOne system. The qPCR reactions were performed using

Table 1 Primers used in the real-time qPCR analysis of Diaphorina citri-associated symbionts

Symbiont Target gene Primer sequence Accession number

Carsonella (myc) 16S rRNA Myc-F (5′-TGGGAACGCCATATGCTAAT-3′)
Myc-R (5′-GTCCCAATGGGTTGTTCATC-3′)

GenBank: EF450250

Profftella (syn) 16S rRNA Syn-F (5′-GCCTTTATGGGTAGGGCTTC-3′)
Syn-R (5′-CCGGACTACGATGCACTTTT-3′)

GenBank: EU570830

Wolbachia (ftsZ) ftsZ-81 ftsZ-F (5′-AGCAGCCAGAGAAGCAAGAG-3′)
ftsZ-R (5′-TACGTCGCACACCTTCAAAA-3′)

pubMLST: ST 173
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12.5 μL of the Maxima SYBR Green/ROX qPCRMaster Mix
(2×) buffer (Fermentas), 0.9 μL of the primer set (concentration
10 μM), 60 ng gDNA (eggs, nymphs, or adults), and 8.7 μL
water (nuclease-free), totaling a final volume of 25 μL. Each
sample had three biological replicates and each biological
replicate was run in technical triplicates.

Statistical Analysis

The qPCR data for each symbiont were subjected to the
Levene and Cramér-von Mises tests. The data were trans-
formed into ln(x) and subjected to ANOVA followed by the
Tukey’s test (p≤0.05) using the SAS 9.1 software (SAS
Institute, Cary, NC).

Additionally, the Gompertz growth model [62] was used to
transform the qPCR data into a growth curve of each symbiont
based on the average time required for a full cycle of the host
(from egg to adult, 45 days) [53]. The growth and maximum
growth rates for each symbiont were also estimated by the
Gompertz equation [62] according to the age of the host, as follows:

Nc ¼ P f � e −e ln −ln Pi
P jð Þð Þð Þ−B�tð Þð Þ

and

t� ¼
−1ð Þ � ln −ln

Pi

P f

� �� �

B

where

Nc Density of the symbiont, estimated from the number of
copies

Pf Size of the final population or maximum growth of the
population

Pi Size of the population at the beginning or initial growth
conditions

B Relative growth rate

t Age of the host
t* Time in which the growth rate is maximal
e Euler number
ln Natural log

Results

All three investigated symbionts associated with D. citri
showed exponential growth from the embryonic to the adult
stage (Figs. 1, 2, and 3). Despite the expected increase in
symbiont density during the initial embryonic stages, signifi-
cant differences (p<0.0001) were observed only between the
early (egg-I) and late (egg-III) embryonic stages. The same
was observed for the nymphal stage, with significant differ-
ences being detected only between the first and the last
nymphs (Fig. 1). Adult females (Fig. 2) showed a progressive
increase (p<0.0001) in Carsonella and Profftella density as
they aged, peaking at the post-reproductive period (female-
III), while Wolbachia density only increased at the post-
reproductive period (female-III). In adult males, a significant
difference in density was observed forCarsonella (p<0.0035)
and Profftella (p<0.0039) only at the post-reproductive period
(male-III) (Fig. 3). No differences were observed in
Wolbachia density in aging adult males (p>0.05) (Fig. 3).

Estimation of the copy number of the three symbionts
indicated a high growth rate during the immature develop-
mental stages of the host, as well as differences between
females and males at the initial (Pi) and final (Pf) symbiont
densities (Table 2) during the period required for D. citri to
fully develop from egg to adult (45 days) (for details on
biological cycle of D. citri, please see [53]). The growth
curves estimated by the Gompertz model (Fig. 4) and the
average copy numbers showed different rates and times in
achieving maximum growth rates (t*). For example,
Wolbachia reached the maximum growth rate during the host
third instar, and slowed down thereafter. Profftella attained its

Fig. 1 Average copy numbers
per equivalent individual (Δeq)
for each endosymbiont during
immature Diaphorina citri
developmental stage. The values
are expressed in natural log (ln)
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maximum growth rate at the last instar, whereas Carsonella
reached its maximum growth rate at the adult stage during the
reproductive period (female-II) for females and the pre-
reproductive period (male-I) for males (Table 2 and Fig. 4).

Discussion

In the D. citri–endosymbiont complex, there is a positive
correlation between the growth pattern of the symbionts and
host development, as indicated by qPCR analyses and estima-
tions for the symbionts growth rates. D. citri has an obligate
association with Carsonella and Profftella, as well as with the
reproductive parasiteWolbachia [47–52]. The growth of sym-
bionts during the embryonic development of D. citri is syn-
chronized with the organogenesis of the bacteriome, as previ-
ously observed by microscopy [63] and is relatively slow
during the initial periods (egg-I and II), then increases its rate
during the final third of embryogenesis (egg-III). The

significant increase in symbiont densities at the end of the
embryonic development of D. citri is different from other
species in which symbiont density decrease during this stage,
such as Periplaneta americana (Blattaria: Blattidae) [64] and
Mastotermes darwiniensis (Isoptera: Mastotermitidae) [65].
The same has been observed during the later stages of devel-
opment of Acyrthosiphon pisum (Hemiptera: Aphididae) [36]
and Camponotus floridanus (Hymenoptera: Formicidae) [40],
in which part of the symbiont population is destroyed due to
the host nutritional demand. Adaptive changes in the regula-
tion of the host immune response to control the density of
obligate and facultative symbionts may also explain changes
in symbiont density during host development [36, 39, 66–68].

The similar growth trend both primary symbionts associat-
ed with the bacteriome of D. citri displayed, by continuously
increasing in number as the host developed, may serve as a
response to the increase in the host metabolic demand [24]. In
this case, Carsonella and Profftella act as syntrophic partners
and are in charge of the biosynthesis of compounds required to

Fig. 2 Average copy numbers
per equivalent individual (Δeq)
for each endosymbiont of adult
female Diaphorina citri at
different reproductive stages. The
values are expressed in natural log
(ln)

Fig. 3 Average copy numbers
per equivalent individual (Δeq)
for each endosymbiont of adult
male Diaphorina citri at different
reproductive stages. The values
are expressed in natural log (ln)
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sustain host growth and development [6, 69]. The continuous
growth of the symbionts associated with the bacteriome of
D. citri may also be attributable to their tolerance/escape to/
from the hosts’ immune system, as suggested for other sym-
biont–host complexes [39, 46, 70].

The similarity in the growth pattern ofWolbachia to that of
the symbionts in the bacteriome of D. citri is probably due to
its capacity to manipulate the hosts’ immune response, al-
though this mechanism seems highly specific for the

Wolbachia–host interactions and thus require further studies
(see review by Ratzka et al. [39]). Wolbachia infects several
tissues of this psyllid [FLC unpublished] and infection is fixed
inD. citri populations in Brazil [58], suggesting this symbiont
may act more than a reproductive parasite in this system, as
there are examples in which Wolbachia is required for host
egg development [17] and for metabolic provisioning [71].

Different factors may influence the density of obligate and
facultative symbionts during host development, which include

Table 2 Parameters estimated by the Gompertz equation based on the copy number of each endosymbiont during male and female Diaphorina citri
ontogeny

Parameters Average copy number per equivalent individual (Δeq) symbiont

Carsonella (myc) Profftella (syn) Wolbachia (ftsZ)

Male Female Male Female Male Female

Pf 26.4471 24.9259 28.0481 26.7086 23.6752 23.4894

Pi 17.9479 18.2546 20.1414 20.1984 14.0304 14.2713

B 0.00204 0.00196 0.00259 0.00309 0.00303 0.00267

t* 464 h 595 h 426 h 412 h 213 h 260 h

Age (t*) Male-I Female-II Nymph-V Nymph-V Nymph-III Nymph-III

Pf size of the final population or maximum growth of the population, estimated in natural log (ln) (copy number); Pi size of the population in the
beginning or initial growth conditions, estimated in ln (copy number); B relative growth ratio; t* time (h) in which the growth rate is maximal; Age (t*)
development stage of the host in which t* is reached

Fig. 4 Curves (ln copy number) (a, b) and rates (ln copy number/h) (c, d)
of the growth of symbionts associated with female (a, c) and male (b, d)
Diaphorina citri (Hemiptera, Liviidae) from egg to adult. The highlighted

points refer to the development period in which the growth rate of each
symbiont is maximum (t*). N3 third instar, N5 fifth instar, PV♂ pre-
reproductive male adult, VT♀ female adult of reproductive age

F. C. A. Dossi et al.



restrictions imposed by the space microbial symbionts have
available for their growth in the cell/tissue they are harbored
[26, 72], their location inside cells or specialized tissues [2,
21], degradation of symbionts in specific phases of the devel-
opment of the host [32, 69, 73], fluctuation in symbiont
density in response to stress factors and symbiont–symbiont
interactions [10, 38, 74, 75], regulation by the host immune
system [39], and possibly even competition between/among
symbionts [38]. Although all three symbionts investigated
displayed similar growth patterns, each one of them reached
their maximum growth rate (t*) at a particular stage of the host
development, suggesting they may require specific stimuli
and carry different levels of interactions with their host as a
result of the evolutionary history of their association with the
host and of the interactions among symbionts.Carsonella, the
older primary symbiont with D. citri, showed the lowest
growth rate among the studied symbionts, reaching a maxi-
mum growth rate (t*) in early adults, while the more recent
primary symbiont D. citri acquired, Profftella [6], grew at a
faster rate and reached its maximal values in the host fifth
instar. But none grew as fast asWolbachia, which attained its
t* in the host third instar.

Although the estimated growth rate decreased during the adult
stage of D. citri, Carsonella and Profftella showed a significant
increase in their densities during the hosts’ adult life. The growth
rate shown during the reproductive period was high enough to
overcome the loss of symbionts due to their migration to the
oocytes for transmission to the offspring (female-II) because
symbiont density was higher than that in the pre-reproductive
females (female-I). However, the most surprising fact was the
high density of symbionts observed in the post-reproductive
period (female-III), both in females and males, in contrast with
previous observations in senescent aphids [32, 35, 36].

The density fluctuations of mutualistic obligate symbionts
of D. citri suggest a parallelism with the host’s metabolic
demand during the sexual maturation and egg production
phases, a condition similar to what was observed during the
reproductive period of tsetse flies Glossina sp. (Diptera:
Glossinidae) and the high densities of the mutualistic symbi-
ont Wigglesworthia [70]. The lowest density of Wolbachia in
females ofD. citri during the reproductive period as compared
to males of D. citri is contrary to previous reports on many
other species [13, 76, 77]. Little is known on the adaptive cost
of infection and the presumable differences in the proliferation
rate of Wolbachia in the reproductive tissues of males and
females [13, 76, 77], but the lower density of Wolbachia in
older females could be a consequence of the reduced growth
rate after t* (third instar) and/or due to the process of
transovarian transmission. Additionally, factors related with
the adaptive cost of infection and the presumable differences
in the proliferation rate of Wolbachia in the reproductive
tissues of males and females need further examination [13,
76, 77].

Overall, the growth of the symbionts during the develop-
mental stages of D. citri is similar to the patterns observed in
other symbiosis systems [32], except for the post-reproductive
period. Symbiont density is usually shown to decrease at the
post-reproductive period [34, 36], butD. citri had a substantial
increase in symbiont density. The increased density of symbi-
onts during the post-reproductive period of D. citri may be
related to the decline in reproductive activities and/or in the
regulatory mechanisms controlling symbiont multiplication
due to the aging of the host [78].
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