(19)

(12)

(11) **EP 2 540 718 A1**

EUROPEAN PATENT APPLICATION

(51) Int Cl.:

C07D 417/04 (2006.01)

- (43) Date of publication: 02.01.2013 Bulletin 2013/01
- (21) Application number: 11171950.6
- (22) Date of filing: 29.06.2011
- (84) Designated Contracting States:
 AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
 PL PT RO RS SE SI SK SM TR
 Designated Extension States:
 BA ME
- (71) Applicant: Syngenta Participations AG 4058 Basel (CH)

(54) Novel insecticides

(57) Compounds of formula I

- (72) Inventor: The designation of the inventor has not yet been filed
- (74) Representative: Hölscher, Ingo et al Syngenta Crop Protection Münchwilen AG Intellectual Property Werk Stein Schaffhauserstrasse 4332 Stein (CH)

wherein the substituents are as defined in claim 1, and the agrochemically acceptable salts and all stereoisomers and tautomeric forms of the compounds of formula I can be used as insecticides and can be prepared in a manner known per se.

Printed by Jouve, 75001 PARIS (FR)

Description

[0001] The present invention relates to insecticidally active 2-(3-pyridyl)-thiazole and 2-(3-pyridyl)-thiadiazole derivatives, to processes for their preparation, to compositions comprising those compounds, and to their use for controlling insects or representatives of the order Acarina.

[0002] 2-(3-Pyridyl)-thiazole derivatives with insecticidal action are known and described, for example, in US-4,080,457, WO 2009/149858, WO 2010/129497 and WO 2010/006713.

[0003] There have now been found novel 2-(3-pyridyl)-thiazole and 2-(3-pyridyl)-thiadiazole derivatives with pesticidal properties.

10 [0004] The present invention accordingly relates to compounds of formula I

5

20 wherein

X is nitrogen or C-R₁;

Y is nitrogen or C-R₄;

- R₁ is hydrogen, C₁-C₆alkyl or halogen;
- R₃ is a five- to ten-membered monocyclic or fused bicyclic ring system which can be aromatic, partially saturated or fully saturated and can contain 1 to 4 hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, it not being possible for each ring system to contain more than 2 oxygen atoms and more than 2 sulfur atoms, and it being possible for the five- to ten-membered ring system itself to be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, nitro, amino, hydroxy, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₂-C₆alkynyloxy, C₃-C₆cycloalkyl, C₅-C₇cycloalkenyl, C₅-C₈cydoalkynyl, C₃-C₆cycloalkylamino, C₁-C₆haloalkyl, C₂-C₆haloalkenyl, C₂-C₆haloalkynyl, C₃-C₆cycloalkyl, C₅-C₇cycloalkenyl, C₂-C₇halocycloalkenyl, C₂-C₈halocyclo-alkenyl, C₂-C₆haloalkyl, C₂-C₆haloalkynyl, C₃-C₆cycloalkyl, C₂-C₆haloalkynyl, C₃-C₆cycloalkylamino, C₁-C₆haloalkynyl, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆alkylamino, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆alkylamino, di-(C₁-C₆alkyl)amino, C₃-C₆cycloalkylamino, C₁-C₆alkyl-C₃-C₆cycloalkylamino, C₁-C₆alkylamino, C₁-C₆alkylamino, C₁-C₆alkylamino, di-(C₁-C₆alkylamino, C₁-C₆alkylamino, C₁-C₆alkylamino, di-(C₁-C₆alkylamino, C₁-C₆alkylamino, C₁-C₆alkylamino, di-(C₁-C₆alkylamino, C₁-C₆alkylamino, C₁-C₆alkylamino, C₁-C₆alkylamino, C₁-C₆alkylamino, C₁-C₆alkylaminocarbonyl, C₁-C₆alkylaminocarbonyl, C₁-C₆alkylamino-carbonyl, C₁-C₆alkylaminocarbonyl, C₁-C₆alkylaminocarbonyloxy, tri-(C₁-C₆alkylaminocarbonyloxy, tri-(C₁-C₆alkyl)si-lyl or phenyl, it being possible for the phenyl group in turn to be mono- to polysubstituted by substituents independently
- ⁴⁰ selected from the group consisting of hydroxy, C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_1-C_6 alkoxy, C_1-C_6 alkylthio, C_1-C_6 alkylthio, C_2-C_6 alkylthio, C_2-C_6 alkylthio, C_2-C_6 alkylthio, C_2-C_6 alkylthio, C_1-C_3 alkylthio, C_1-C_3 alkylthio, C_1-C_3 alkylthio, C_1-C_6 alkylsulfinyl, C_1-C_6 alkylsulfinyl, C_1-C_6 alkylsulfinyl, C_1-C_6 alkylsulfinyl, C_1-C_6 alkylsulfinyl, C_1-C_6 alkylsulfonyl, aminosulfonyl, C_1-C_6 alkylsulfonyl, N,N-di-(C_1-C_2 alkyl)aminosulfonyl, di(C_1-C_4 alkyl)amino, halogen, cyano and nitro; and the substituents at the nitrogen atoms in the ring systems being other than halogen; and

in the ring systems being other than halogen; and
 R₄ is hydrogen or halogen;
 and agrochemically acceptable salts/enantiomers/tautomers/N-oxides of those compounds.

[0005] Compounds of formula I which have at least one basic centre can form, for example, acid addition salts, for example with strong inorganic acids such as mineral acids, for example perchloric acid, sulphuric acid, nitric acid, nitrose acid, a phosphorus acid or a hydrohalic acid, with strong organic carboxylic acids, such as C₁-C₄alkanecarboxylic acids which are unsubstituted or substituted, for example by halogen, for example acetic acid, such as saturated or unsaturated dicarboxylic acids, for example oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid or phthalic acid, such as hydroxycarboxylic acids, for example ascorbic acid, lactic acid, malic acid, tartaric acid or citric acid, or such as benzoic acid, or with organic sulfonic acids, such as C₁-C₄alkane- or arylsulfonic acids which are unsubstituted or substituted or substituted or substituted or acids, such as C₁-C₄alkane- or arylsulfonic acid. Compounds of formula I which have at least one acidic group can form, for example, salts with bases, for example mineral salts such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts, or salts with ammonia or an organic

amine, such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower-alkylamine, for example ethyl-, diethyl-, triethyl- or dimethylpropylamine, or a mono-, di- or trihydroxy-lower-alkylamine, for example mono-, di- or triethanolamine. [0006] The alkyl groups occurring in the definitions of the substituents can be straight-chain or branched and are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, pentyl, hexyl, nonyl, decyl and ther

⁵ branched isomers. Alkoxy, alkenyl and alkynyl radicals are derived from the alkyl radicals mentioned. The alkenyl and alkynyl groups can be mono- or polyunsaturated.
 [0007] Halogen is generally fluorine, chlorine, bromine or iodine. This also applies, correspondingly, to halogen in

[0007] Halogen is generally fluorine, chlorine, bromine or iodine. This also applies, correspondingly, to halogen in combination with other meanings, such as haloalkyl or halophenyl.

[0008] Haloalkyl groups preferably have a chain length of from 1 to 6 carbon atoms. Haloalkyl is, for example, fluor-omethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 2-chloroethyl, pentafluoroethyl, 1,1-difluoro-2,2,2-trichloroethyl, 2,2,3,3-tetrafluoroethyl and 2,2,2-trichloroethyl; preferably trichloromethyl, difluorochloromethyl, difluoromethyl, trifluoromethyl, trifluoromethyl, trifluoromethyl.

[0009] Alkoxy groups preferably have a preferred chain length of from 1 to 6 carbon atoms. Alkoxy is, for example, methoxy, ethoxy, propoxy, i-propoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy and also the isomeric pentyloxy and hexyloxy radicals; preferably methoxy and ethoxy.

- **[0010]** Alkoxycarbonyl is, for example, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, nbutoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl or tert-butoxycarbonyl; preferably methoxycarbonyl or ethoxycarbonyl. Haloalkoxy groups preferably have a chain length of from 1 to 6 carbon atoms. Haloalkoxy is, for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 2-fluoroethoxy, 2-chlo-
- 20 roethoxy, 2,2-difluoroethoxy and 2,2,2-trichloroethoxy; preferably difluoromethoxy, 2-chloroethoxy and trifluoromethoxy. [0011] Alkylthio groups preferably have a chain length of from 1 to 6 carbon atoms. Alkylthio is, for example, methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio or tert-butylthio, preferably methylthio and ethyl-thio. Alkylsulphinyl is, for example, methylsulphinyl, ethylsulphinyl, propylsulphinyl, isopropylsulphinyl, n-butylsulphinyl, isobutylsulphinyl, sec-butylsulphinyl, tert-butylsulphinyl; preferably methylsulphinyl.
- [0012] Alkylsulphonyl is, for example, methylsulphonyl, ethylsulphonyl, propylsulphonyl, isopropylsulphonyl, n-butyl-sulphonyl, isobutylsulphonyl, sec-butylsulphonyl or tert-butylsulphonyl; preferably methylsulphonyl or ethylsulphonyl.
 [0013] Alkylamino is, for example, methylamino, ethylamino, n-propylamino, isopropylamino or the isomeric butylamines. Dialkylamino is, for example, dimethylamino, methylethylamino, diethylamino, n-propylmethylamino, dibutylamino and diisopropylamino. Preference is given to alkylamino groups having a chain length of from 1 to 4 carbon
- 30 atoms.

[0014] Alkoxyalkyl groups preferably have a chain length of 1 to 6 carbon atoms. Alkoxyalkyl is, for example, methoxymethyl, methoxyethyl, ethoxyethyl, n-propoxymethyl, n-propoxyethyl, isopropoxymethyl or isopropoxyethyl.

[0015] The cycloalkyl groups preferably have from 3 to 6 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. Phenyl, also as part of a substituent such as phenoxy, benzyl, benzyloxy, benzoyl, phenylthio, phenylalkyl, phenoxyalkyl, may be substituted. In this case, the substituents can be in ortho, meta and/or para position. The preferred substituent positions are the ortho and para positions to the ring attachment point.

[0016] In the context of the present invention "mono- to polysubstituted" in the definition of the substituents, means typically, depending on the chemical structure of the substituents, monosubstituted to seven-times substituted, preferably monosubstituted to five-times substituted, more preferably mono-, double- or triple-substituted.

- **[0017]** According to the present invention, a five- to ten-membered monocyclic or fused bicyclic ring system which may be aromatic, partially saturated or fully saturated is, depending of the number of ring members, for example, selected from the group consisting of
- 45

50

35

40

5

10

cyclopentyl, cyclohexyl, where said cycloalkylgroups for their part may be preferably unsubstituted or substituted by C_1-C_6 alkyl or halogen, or is phenyl, benzyl, naphthyl or the following heterocyclic groups: pyrrolyl; pyridyl; pyrazolyl; pyrimidyl; pyrazinyl; imidazolyl; thiadiazolyl; quinazolinyl; furyl; oxadiazolyl; indolizinyl; pyranyl; isobenzofuranyl; thienyl; naphthyridinyl; (1-methyl-1H-pyrazol-3-yl)-; (1-ethyl-1H-pyrazol-3-yl)-; (1-propyl-1H-pyrazol-3-yl)-; (1H-pyrazol-3-yl)-; (1,5-dimethyl-1H-pyrazol-3-yl)-; (1-ethyl-1H-pyrazol-3-yl)-; (1H-pyrazol-1-yl)-; (3,5-dimethyl-1H-pyrazol-1-yl)-; (3-methyl-1-pyrazol-1-yl)-; (3-methyl-1-pyrazol-1-yl)-; (1H-pyrazol-1-yl)-; (1H-pyrazol-1-yl)-; (3-methyl-1-pyrazol-1-yl)-; (1H-pyrazol-1-yl)-; (1H-pyrazo

- pyrrol-2-yl)-; (1-methyl-1H-pyrrol-2-yl)-; (1H-pyrrol-1-yl)-; (1-methyl-1H-pyrrol-3-yl)-; (2-furanyl)-; (5-methyl-2-furanyl)-; (3-furanyl)-; (5-methyl-2-thienyl)-; (2-thienyl)-; (2-thienyl)-; (1-methyl-1H-imidazol-2-yl)-; (1H-imidazol-2-yl)-; (1-methyl-1H-imidazol-2-yl)-; (1-methyl-1H-imidazol-2-yl)-; (2-methyl-5-oxazolyl)-; (2-methyl-4-oxazolyl)-; (2-methyl-2-thiazolyl)-; (5-methyl-2-thiazolyl)-; (2-methyl-5-thiazolyl)-; (2-methyl-4-thiazolyl)-; (3-methyl-2-thiazolyl)-; (5-methyl-2-thiazolyl)-; (2-methyl-5-thiazolyl)-; (2-methyl-4-isothiazolyl)-; (3-methyl-4-isothiazolyl)-; (3-methyl-5-isothiazolyl)-; (5-methyl-3-isothiazolyl)-; (1-methyl,-1H-1,2,3-triazol-4-yl)-; (2-methyl-2H-1,2,3-triazol-4-yl)-; (1-methyl-2H-1,2,3-triazol-3-yl)-;
- (1,5-dimethyl-1H-1,2,4-triazol-3-yl)-; (3-methyl-1H-1,2,4-triazol-1-yl)-; (5-methyl-1H-1,2,4-triazol-1-yl)-; (4,5-dimethyl-20
 4H-1,2,4-triazol-3-yl)-; (4-methyl-4H-1,2,4-triazol-3-yl)-; (4H-1,2,4-triazol-4-yl)-; (5-methyl-1,2,3-oxadiazol-4-yl)-; (1,2,3-oxadiazol-4-yl)-; (3-methyl-1,2,4-oxadiazol-5-yl)-; (5-methyl-1,2,4-oxadiazol-3-yl)-; (4-methyl-3-furazanyl)-; (3-furazanyl)-; (5-methyl-1,2,4-oxadiazol-2-yl)-; (5-methyl-1,2,3-thiadiazol-4-yl)-; (1,2,3-thiadiazol-4-yl)-; (3-methyl-1,2,4-thiadiazol-2-yl)-; (5-methyl-1,2,4-thiadiazol-3-yl)-; (5-methyl-1,2,4-thiadiazol-3-yl)-; (5-methyl-1,2,4-thiadiazol-3-yl)-; (1-methyl-1,2,5-thiadiazol-3-yl)-; (5-methyl-1,3,4-thiadiazol-2-yl)-; (1-methyl-1H-tetrazol-5-yl)-; (1-methyl-1H-tetrazol-5-yl)-; (2-ethyl-2H-tetrazol-5-yl)-; (2-ethyl-2H-tetrazol-5-yl)-;
- ²⁵ yl)-; (5-methyl-2H-tetrazol-2-yl)-; (2H-tetrazol-2-yl)-; (2-pyridyl)-; (6-methyl-2-pyridyl)-; (4-pyridyl)-; (3-pyridyl)-; (6-methyl-3-pyridazinyl)-; (5-methyl-3-pyridazinyl)-; (3-pyridazinyl)-; (4,6-dimethyl-2-pyrimidinyl)-; (4-methyl-2-pyrimidinyl)-; (2-pyrimidinyl)-; (2-methyl-4-pyrimidinyl)-; (2-methyl-4-pyrimidinyl)-; (2-methyl-5-pyrimidinyl)-; (2-methyl-2-pyrazinyl)-; (2-pyrazinyl)-; (4,6-dimethyl-1,3,5-triazin-2-yl)-; (4,6-dichloro-1,3,5-triazin-2-yl)-; (1,3,5-triazin-2-yl)-; (4-methyl-1,3,5-triazin-2-yl)-; (3-methyl-1,2,4-triazin-5-yl)-; (3-methyl-1,2,4-triazin-6-yl)-;

30

40

35

wherein each R_{26} is methyl, each R_{27} and each R_{28} are independently hydrogen, C_1 - C_3 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio or trifluoromethyl, X_4 is oxygen or sulfur and r = 1, 2, 3 or 4. Where no free valency is indicated in those definitions, for example as in

30

35

the linkage site is located at the carbon atom labelled "CH" or in a case such as, for example,

40

at the bonding site indicated at the bottom left.

- ⁴⁵ **[0018]** In preferred compounds of formula I, said ring system R_3 is aromatic. Preferably said aromatic ring system R_3 is mono- to polysubstituted by substituents selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkylamino, C_1 - C_6 alkoxycarbonyl, C_2 - C_6 alkynyloxy, C_3 - C_6 cycloalkyl, halogen, cyano, nitro, amino, di-(C_1 - C_6 alkyl) amino, C_3 - C_6 cycloalkylamino and phenyl, it being possible for the phenyl group in turn to be mono- to polysubstituted by substituents independently selected from the group consisting of halogen
- ⁵⁰ and C₁-C₆alkoxy. In particular said aromatic ring system R₃ is selected from the group consisting of [1,2,4]triazolo[4,3-b]pyridazinyl, pyridazinyl, pyridyl, pyrimidinyl and quinazolinyl. Especially preferred said aromatic ring system is six-membered and contains 2 nitrogen atoms. Most preferred said aromatic ring system is 2-pyrimidyl. In all of the preferences mentioned above, X is preferably C-R₁, wherein R₁ is preferably C₁-C₄alkyl, in particular methyl. In all of the preferences mentioned above, Y is preferably C-R₄, wherein R₄ is preferably hydrogen.
- ⁵⁵ **[0019]** An outstanding group of compounds of formula I is represented by the compounds of formula I, wherein said ring system R_3 is aromatic with the preferences mentioned above, and R_2 is C_1 - C_6 alkyl which can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, nitro, cyano, C_1 - C_6 alkylsulfinyl and C_1 - C_6 alkylsulfonyl. In said outstanding group, R_4 is in particular hydrogen or

fluorine. In said outstanding group X is preferably $C-R_1$, wherein R_1 is preferably C_1-C_4 alkyl, in particular methyl. In said outstanding group, Y is preferably $C-R_4$, wherein R_4 is preferably hydrogen.

[0020] A further outstanding group of compounds of formula I is represented by the compounds of formula I, wherein said ring system R_3 is aromatic with the preferences mentioned above, and R_1 is C_1 - C_6 alkyl or halogen; and R_2 is

⁵ C_1-C_6 alkyl. In said further outstanding group R_4 is in particular hydrogen or fluorine. In said further outstanding group, X is preferably C-R₁, wherein R₁ is preferably C₁-C₄alkyl, in particular methyl. In said further outstanding group, Y is preferably C-R₄, wherein R₄ is preferably hydrogen.

[0021] Another outstanding group of compounds of formula I is represented by the compounds of formula I, wherein said ring system R_3 is aromatic with the preferences mentioned above, and R_1 is methyl or chloro; and R_2 is methyl. In said another outstanding group R_4 is in particular hydrogen or fluorine. In said another outstanding group, X is preferably

C-R₁, wherein R₁ is preferably C₁-C₄alkyl, in particular methyl. In said another outstanding group, Y is preferably C-R₄, wherein R₄ is preferably hydrogen.

[0022] In a further preferred group of compounds of formula I,

- R_2 is C_1-C_6 alkyl which can be mono- to disubstituted by substituents independently selected from the group consisting of halogen, nitro, cyano, C_1-C_6 alkoxy, C_1-C_6 alkylthio, C_1-C_6 alkylsulfinyl and C_1-C_6 alkylsulfonyl. In said further preferred group R_4 is in particular hydrogen or fluorine. In said further preferred group, X is preferably $C-R_1$, wherein R_1 is preferably C_1-C_4 alkyl, in particular methyl. In said further preferred group, Y is preferably $C-R_4$, wherein R_4 is preferably hydrogen. **[0023]** In a particular preferred group of compounds of formula I,
- R_1 is C_1 - C_6 alkyl or halogen; and R_2 is C_1 - C_6 alkyl. In said particular preferred group R_4 is in particular hydrogen or fluorine. In said particular preferred group, X is preferably C- R_1 , wherein R_1 is preferably C_1 - C_4 alkyl, in particular methyl. In said particular preferred group, Y is preferably C- R_4 , wherein R_4 is preferably hydrogen.

[0024] In an especially preferred group of compounds of formula I,

 R_1 is methyl or chloro; and R_2 is methyl. In said especially preferred group R_4 is in particular hydrogen or fluorine. In said especially preferred group, X is preferably C- R_1 , wherein R_1 is preferably C_1 - C_4 alkyl, in particular methyl. In said especially preferred group, Y is preferably C- R_4 , wherein R_4 is preferably hydrogen.

[0025] Further compounds of formula I are preferred, wherein

R₄ is hydrogen or fluorine.

[0026] The method according to the invention for the preparation of compounds of formula (I)

30

25

10

35

wherein X, Y, R₂, and R₃ are as described as in formula (I) above, comprises reacting a compound of formula (II)

40

45

Y S R₂ (II),

with a compound of formula (III)

50

R₃ - LG (III),

wherein R_3 is as described as in formula (I) above, and LG represents a leaving group, for example halogen, in the presence of a base, and optionally in the presence of a catalyst for example dimethylaminopyridine (DMAP). **[0027]** Alternatively, compounds of the formula (I) can be prepared by reacting compounds of the formula (IV)

5

wherein R₂ is as described as in formula I above, with a compound of formula (V)

10

 H_2NOR_3 (V),

wherein R_3 is as described as in formula (I) above, under conditions where water is removed from the reaction mixture. [0028] The compounds of formula (II) and (IV) may be prepared according to reaction scheme 1:

15

Reaction Scheme 1:

- ⁴⁵ [0029] Compound of formula (VI) are either known or may be prepared by methods well described in the literature. Compounds of formula (VI) are converted to compounds of formula (VII) under conditions used for the Sandmeyer reaction. The compound of formula (VII) is coupled in a Suzuki reaction with a boronic derivative of formula (IX) wherein Ra is B(OH)₂, B(OMe)₂, B(OiPr)₂, BF₃K or B(-OCMe₂CMe₂O-) to compound of formula (IV). Alternatively compound of formula (VII) is converted to compound of formula (VIII) using hydroxylamine with removal of water and this compound of formula (VIII) is coupled in a Suzuki reaction with a boronic derivative of formula (IX) with Ra as defined aboveto
- compound of formula (II). Compound of the formula (IV) are converted to compounds of formula (II) by reaction with hydroxylamine and removal of water. The Suzuki reaction is known from the literature e.g. J. P. Wolfe, J. S. Nakhla, The Suzuki Reaction in Name Reactions for Homologations, John Wiley & Sons, Inc., Hoboken, N. J, 2009, Pt. 1, 163. [0030] Compounds of formula (III) are either known or can be prepared by known methods. Compounds of formula
- ⁵⁵ (V) are either known or can be prepared by known methods. Compounds of formula (IVA), where X represents CR₁, may be prepared according to reaction scheme 2:

Reaction scheme 2:

[0031] Compounds of formula (X) are coupled with compounds of formula (XI) to give compounds of formula (IVA). Conditions for this process are reported in Bioorganic & Medicinal Chemistry Letters, 17(4), 1056-1061; 2007. Compounds of formula (X) are known or maybe prepared by methods well known in the literature. Compounds of formula (XI) are known or may be prepared by methods well known in the literature.

20 [0032] A further synthesis of compounds of formula I is illustrated in scheme 3.

[0033] In scheme 3, compounds of formula XII (prepared according to WO09149858 and WO10006713) are activated at the hydroxyl position, e.g. with thionyl chloride or for example 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) or dicyclohexylcarbodiimide (DCC) in the presence of a base, for example triethylamine or dimethyl amino pyridine (DMAP) in a solvent, such as dichloromethane, at temperatures between 0°C and 50 °C, preferably 0°C and 20 °C, to 50 give compounds of formula XIII. Compounds of formula XIII can be reacted with an alkylmetal compound, for example an alkylmagnesium Grignard of the formula R₂MgX (where X is halogen) or an alkyllithium reagent of the formula R₂Li, wherein R₂ is as previously defined, in an inert solvent such as THF at temperatures between preferably - 78°C and 20 °C, to give compounds of formula IV. Such Weinreb amide chemistry is well known to those skilled in the art (see for example WO10006713) Compounds of formula IV are converted to compounds of formula I by methods previously

55

described, or those shown in scheme 3. [0034] The reactants can be reacted in the presence of a base. Examples of suitable bases are alkali metal or alkaline earth metal hydroxides, alkali metal or alkaline earth metal hydrides, alkali metal or alkaline earth metal amides, alkali

metal or alkaline earth metal alkoxides, alkali metal or alkaline earth metal acetates, alkali metal or alkaline earth metal carbonates, alkali metal or alkaline earth metal dialkylamides or alkali metal or alkaline earth metal alkylsilylamides, alkylamines, alkylenediamines, free or N-alkylated saturated or unsaturated cycloalkylamines, basic heterocycles, ammonium hydroxides and carbocyclic amines. Examples which may be mentioned are sodium hydroxide, sodium hydride,

- ⁵ sodium amide, sodium methoxide, sodium acetate, sodium carbonate, potassium tert-butoxide, potassium hydroxide, potassium carbonate, potassium hydride, lithium diisopropylamide, potassium bis(trimethylsilyl)amide, calcium hydride, triethylamine, diisopropylethylamine, triethylenediamine, cyclohexylamine, N-cyclohexyl-N,N-dimethylamine, N,N-di-ethylaniline, pyridine, 4-(N,N-dimethylamino)pyridine, quinuclidine, N-methylmorpholine, benzyltrimethylammonium hydroxide and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU).
- ¹⁰ **[0035]** The reactants can be reacted with each other as such, i.e. without adding a solvent or diluent. In most cases, however, it is advantageous to add an inert solvent or diluent or a mixture of these. If the reaction is carried out in the presence of a base, bases which are employed in excess, such as triethylamine, pyridine, N-methylmorpholine or N,N-diethylaniline, may also act as solvents or diluents.
- [0036] The reaction is advantageously carried out in a temperature range from approximately -80°C to approximately +140°C, preferably from approximately -30°C to approximately +100°C, in many cases in the range between ambient temperature and approximately +80°C.

[0037] A compound of formula I can be converted in a manner known per se into another compound of formula I by replacing one or more substituents of the starting compound of formula I in the customary manner by (an)other substituent (s) according to the invention.

- 20 [0038] Depending on the choice of the reaction conditions and starting materials which are suitable in each case, it is possible, for example, in one reaction step only to replace one substituent by another substituent according to the invention, or a plurality of substituents can be replaced by other substituents according to the invention in the same reaction step.
- [0039] Salts of compounds of formula I can be prepared in a manner known per se. Thus, for example, acid addition salts of compounds of formula I are obtained by treatment with a suitable acid or a suitable ion exchanger reagent and salts with bases are obtained by treatment with a suitable base or with a suitable ion exchanger reagent.

[0040] Salts of compounds of formula I can be converted in the customary manner into the free compounds I, acid addition salts, for example, by treatment with a suitable basic compound or with a suitable ion exchanger reagent and salts with bases, for example, by treatment with a suitable acid or with a suitable ion exchanger reagent.

- ³⁰ **[0041]** Salts of compounds of formula I can be converted in a manner known per se into other salts of compounds of formula I, acid addition salts, for example, into other acid addition salts, for example by treatment of a salt of inorganic acid such as hydrochloride with a suitable metal salt such as a sodium, barium or silver salt, of an acid, for example with silver acetate, in a suitable solvent in which an inorganic salt which forms, for example silver chloride, is insoluble and thus precipitates from the reaction mixture.
- ³⁵ **[0042]** Depending on the procedure or the reaction conditions, the compounds of formula I, which have salt-forming properties can be obtained in free form or in the form of salts.

[0043] The compounds of formula I and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can be present in the form of one of the isomers which are possible or as a mixture of these, for example in the form of pure isomers, such as antipodes and/or diastereomers, or as isomer mixtures, such as enantiomer mixtures, for

- 40 example racemates, diastereomer mixtures or racemate mixtures, depending on the number, absolute and relative configuration of asymmetric carbon atoms which occur in the molecule and/or depending on the configuration of non-aromatic double bonds which occur in the molecule; the invention relates to the pure isomers and also to all isomer mixtures which are possible and is to be understood in each case in this sense hereinabove and hereinbelow, even when stereochemical details are not mentioned specifically in each case.
- ⁴⁵ **[0044]** Diastereomer mixtures or racemate mixtures of compounds of formula I, in free form or in salt form, which can be obtained depending on which starting materials and procedures have been chosen can be separated in a known manner into the pure diasteromers or racemates on the basis of the physicochemical differences of the components, for example by fractional crystallization, distillation and/or chromatography.
- [0045] Enantiomer mixtures, such as racemates, which can be obtained in a similar manner can be resolved into the optical antipodes by known methods, for example by recrystallization from an optically active solvent, by chromatography on chiral adsorbents, for example high-performance liquid chromatography (HPLC) on acetyl celulose, with the aid of suitable microorganisms, by cleavage with specific, immobilized enzymes, via the formation of inclusion compounds, for example using chiral crown ethers, where only one enantiomer is complexed, or by conversion into diastereomeric salts, for example by reacting a basic end-product racemate with an optically active acid, such as a carboxylic acid, for
- ⁵⁵ example camphor, tartaric or malic acid, or sulfonic acid, for example camphorsulfonic acid, and separating the diastereomer mixture which can be obtained in this manner, for example by fractional crystallization based on their differing solubilities, to give the diastereomers, from which the desired enantiomer can be set free by the action of suitable agents, for example basic agents.

[0046] Pure diastereomers or enantiomers can be obtained according to the invention not only by separating suitable isomer mixtures, but also by generally known methods of diastereoselective or enantioselective synthesis, for example by carrying out the process according to the invention with starting materials of a suitable stereochemistry.

- N-oxides can be prepared by reacting a compound of the formula I with a suitable oxidizing agent, for example the H₂O₂/
 ⁵ urea adduct in the presence of an acid anhydride, e.g. trifluoroacetic anhydride. Such oxidations are known from the literature, for example from J. Med. Chem., 32 (12), 2561-73, 1989 or WO 00/15615.
 It is advantageous to isolate or synthesize in each case the biologically more effective isomer, for example enantiomer or diastereomer, or isomer mixture, for example enantiomer mixture or diastereomer mixture, if the individual components have a different biological activity.
- ¹⁰ The compounds of formula I and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can, if appropriate, also be obtained in the form of hydrates and/or include other solvents, for example those which may have been used for the crystallization of compounds which are present in solid form. The compounds of formula I according to the invention are preventively and/or curatively valuable active ingredients in
- the field of pest control, even at low rates of application, which have a very favorable biocidal spectrum and are well tolerated by warm-blooded species, fish and plants. The active ingredients according to the invention act against all or individual developmental stages of normally sensitive, but also resistant, animal pests, such as insects or representatives of the order Acarina. The insecticidal or acaricidal activity of the active ingredients according to the invention can manifest itself directly, i. e. in destruction of the pests, which takes place either immediately or only after some time has elapsed, for example during ecdysis, or indirectly, for example in a reduced oviposition and/or hatching rate, a good activity
- corresponding to a destruction rate (mortality) of at least 50 to 60%.
 [0047] Examples of the abovementioned animal pests are:

from the order Acarina, for example,

- Acalitus spp, Aculus spp, Acaricalus spp, Aceria spp, Acarus siro, Amblyomma spp., Argas spp., Boophilus spp.,
 ²⁵ Brevipalpus spp., Bryobia spp, Calipitrimerus spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides spp,
 Eotetranychus spp, Eriophyes spp., Hemitarsonemus spp, Hyalomma spp., Ixodes spp., Olygonychus spp, Orni thodoros spp., Polyphagotarsone latus, Panonychus spp., Phyllocoptruta oleivora, Phytonemus spp, Polyphago tarsonemus spp, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Steneotarsonemus spp,
 Tarsonemus spp. and Tetranychus spp.; from the order *Anoplura*, for example,
- ³⁰ Haematopinus spp., Linognathus spp., Pediculus spp., Pemphigus spp. and Phylloxera spp.; from the order *Coleoptera*, for example,

Agriotes spp., Amphimallon majale, Anomala orientalis, Anthonomus spp., Aphodius spp, Astylus atromaculatus, Ataenius spp, Atomaria linearis, Chaetocnema tibialis, Cerotoma spp, Conoderus spp, Cosmopolites spp., Cotinis nitida, Curculio spp., Cyclocephala spp, Dermestes spp., Diabrotica spp., Diloboderus abderus, Epilachna spp.,

- 35 Eremnus spp., Heteronychus arator, Hypothenemus hampei, Lagria vilosa, Leptinotarsa decemLineata, Lissorhoptrus spp., Liogenys spp, Maecolaspis spp, Maladera castanea, Megascelis spp, Melighetes aeneus, Melolontha spp., Myochrous armatus, Orycaephilus spp., Otiorhynchus spp., Phyllophaga spp, Phlyctinus spp., Popillia spp., Psylliodes spp., Rhyssomatus aubtilis, Rhizopertha spp., Scarabeidae, Sitophilus spp., Sitotroga spp., Somaticus spp, Sphenophorus spp, Sternechus subsignatus, Tenebrio spp., Tribolium spp. and Trogoderma spp.;
- from the order *Diptera*, for example,
 Aedes spp., Anopheles spp, Antherigona soccata, Bactrocea oleae, Bibio hortulanus, Bradysia spp, Calliphora erythrocephala, Ceratitis spp., Chrysomyia spp., Culex spp., Cuterebra spp., Dacus spp., Delia spp, Drosophila melanogaster, Fannia spp., Gastrophilus spp., Geomyza tripunctata, Glossina spp., Hypoderma spp., Hypobosca spp., Liriomyza spp., Lucilia spp., Melanagromyza spp., Musca spp., Oestrus spp., Orseolia spp., Oscinella frit, Pegomyia
- ⁴⁵ hyoscyami, Phorbia spp., Rhagoletis spp, Rivelia quadrifasciata, Scatella spp, Sciara spp., Stomoxys spp., Tabanus spp., Tannia spp. and Tipula spp.;

from the order Hemiptera, for example,

50

Acanthocoris scabrator, Acrosternum spp, Adelphocoris lineolatus, Amblypelta nitida, Bathycoelia thalassina, Blissus spp, Cimex spp., Clavigralla tomentosicollis, Creontiades spp, Distantiella theobroma, Dichelops furcatus, Dysdercus spp., Edessa spp, Euchistus spp., Eurydema pulchrum, Eurygaster spp., Halyomorpha halys, Horcias nobilellus, Leptocorisa spp., Lygus spp, Margarodes spp, Murgantia histrionic, Neomegalotomus spp, Nesidiocoris tenuis, Nezara spp., Nysius simulans, Oebalus insularis, Piesma spp., Piezodorus spp, Rhodnius spp., Sahlbergella singularis, Scaptocoris castanea, Scotinophara spp., Thyanta spp, Triatoma spp., Vatiga illudens;

Acyrthosium pisum, Adalges spp, Agalliana ensigera, Agonoscena targionii, Aleurodicus spp, Aleurocanthus spp,
 ⁵⁵ Aleurolobus barodensis, Aleurothrixus floccosus, Aleyrodes brassicae, Amarasca biguttula, Amritodus atkinsoni,
 Aonidiella spp., Aphididae, Aphis spp., Aspidiotus spp., Aulacorthum solani, Bactericera cockerelli, Bemisia spp,
 Brachycaudus spp, Brevicoryne brassicae, Cacopsylla spp, Cavariella aegopodii Scop., Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Cicadella spp, Cofana spectra, Cryptomyzus spp, Cicadulina

spp, Coccus hesperidum, Dalbulus maidis, Dialeurodes spp, Diaphorina citri, Diuraphis noxia, Dysaphis spp, Empoasca spp., Eriosoma larigerum, Erythroneura spp., Gascardia spp., Glycaspis brimblecombei, Hyadaphis pseudobrassicae, Hyalopterus spp, Hyperomyzus pallidus, Idioscopus clypealis, Jacobiasca lybica, Laodelphax spp., Lecanium corni, Lepidosaphes spp., Lopaphis erysimi, Lyogenys maidis, Macrosiphum spp., Mahanarva spp, Met-

- ⁵ calfa pruinosa, Metopolophium dirhodum, Myndus crudus, Myzus spp., Neotoxoptera sp, Nephotettix spp., Nilaparvata spp., Nippolachnus piri Mats, Odonaspis ruthae, Oregma lanigera Zehnter, Parabemisia myricae, Paratrioza cockerelli, Parlatoria spp., Pemphigus spp., Peregrinus maidis, Perkinsiella spp, Phorodon humuli, Phylloxera spp, Planococcus spp., Pseudaulacaspis spp., Pseudococcus spp., Pseudatomoscelis seriatus, Psylla spp., Pulvinaria aethiopica, Quadraspidiotus spp., Quesada gigas, Recilia dorsalis, Rhopalosiphum spp., Saissetia spp., Scaphoi-
- ¹⁰ deus spp., Schizaphis spp., Sitobion spp., Sogatella furcifera, Spissistilus festinus, Tarophagus Proserpina, Toxoptera spp, Trialeurodes spp, Tridiscus sporoboli, Trionymus spp, Trioza erytreae, Unaspis citri, Zygina flammigera, Zyginidia scutellaris, ;

from the order Hymenoptera, for example,

Acromyrmex, Arge spp, Atta spp., Cephus spp., Diprion spp., Diprionidae, Gilpinia polytoma, Hoplocampa spp.,
 Lasius spp., Monomorium pharaonis, Neodiprion spp., Pogonomyrmex spp, Slenopsis invicta, Solenopsis spp. and Vespa spp.;

from the order Isoptera, for example,

Coptotermes spp, Corniternes cumulans, Incisitermes spp, Macrotermes spp, Mastotermes spp, Microtermes spp, Reticulitermes spp.; Solenopsis geminate

²⁰ from the order *Lepidoptera*, for example,

Acleris spp., Adoxophyes spp., Aegeria spp., Agrotis spp., Alabama argillaceae, Amylois spp., Anticarsia gemmatalis, Archips spp., Argyresthia spp, Argyrotaenia spp., Autographa spp., Bucculatrix thurberiella, Busseola fusca, Cadra cautella, Carposina nipponensis, Chilo spp., Choristoneura spp., Chrysoteuchia topiaria, Clysia ambiguella, Cnaphalocrocis spp., Cnephasia spp., Cochylis spp., Coleophora spp., Colias lesbia, Cosmophila flava, Crambus spp,

- ²⁵ Crocidolomia binotalis, Cryptophlebia leucotreta, Cydalima perspectalis, Cydia spp., Diaphania perspectalis, Diatraea spp., Diparopsis castanea, Earias spp., Eldana saccharina, Ephestia spp., Epinotia spp, Estigmene acrea, Etiella zinckinella, Eucosma spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Feltia jaculiferia, Grapholita spp., Hedya nubiferana, Heliothis spp., Hellula undalis, Herpetogramma spp, Hyphantria cunea, Keiferia lycopersicella, Lasmopalpus lignosellus, Leucoptera scitella, Lithocollethis spp., Lobesia botrana, Loxostege bifidalis,
- ³⁰ Lymantria spp., Lyonetia spp., Malacosoma spp., Mamestra brassicae, Manduca sexta, Mythimna spp, Noctua spp, Operophtera spp., Orniodes indica, Ostrinia nubilalis, Pammene spp., Pandemis spp., Panolis flammea, Papaipema nebris, Pectinophora gossypiela, Perileucoptera coffeella, Pseudaletia unipuncta, Phthorimaea operculella, Pieris rapae, Pieris spp., Plutella xylostella, Prays spp., Pseudoplusia spp, Rachiplusia nu, Richia albicosta, Scirpophaga spp., Sesamia spp., Sparganothis spp., Spodoptera spp., Sylepta derogate, Synanthedon spp., Thaumetopoea spp., Tortrix spp., Trichoplusia ni, Tuta absoluta, and Yponomeuta spp.;
- spp., Tortrix spp., Trichoplusia ni, Tuta absoluta, and Yponomeuta spp.;
 from the order *Mallophaga*, for example,
 Damalinea spp. and Trichodectes spp.;
 from the order *Orthoptera*, for example,
 Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Neocurtilla hexadactyla, Periplaneta
- spp., Scapteriscus spp, and Schistocerca spp.;
 from the order *Psocoptera*, for example,
 Liposcelis spp.;
 from the order *Siphonaptera*, for example,
 - Ceratophyllus spp., Ctenocephalides spp. and Xenopsylla cheopis;

45

from the order Thysanoptera, for example,

Calliothrips phaseoli, Frankliniella spp., Heliothrips spp, Hercinothrips spp., Parthenothrips spp, Scirtothrips aurantii, Sericothrips variabilis, Taeniothrips spp., Thrips spp;

from the order Thysanura, for example, Lepisma saccharina.

50

[0048] The active ingredients according to the invention can be used for controlling, i. e. containing or destroying, pests of the abovementioned type which occur in particular on plants, especially on useful plants and ornamentals in agriculture, in horticulture and in forests, or on organs, such as fruits, flowers, foliage, stalks, tubers or roots, of such plants, and in some cases even plant organs which are formed at a later point in time remain protected against these pests.

⁵⁵ Suitable target crops are, in particular, cereals, such as wheat, barley, rye, oats, rice, maize or sorghum; beet, such as sugar or fodder beet; fruit, for example pomaceous fruit, stone fruit or soft fruit, such as apples, pears, plums, peaches, almonds, cherries or berries, for example strawberries, raspberries or blackberries; leguminous crops, such as beans, lentils, peas or soya; oil crops, such as oilseed rape, mustard, poppies, olives, sunflowers, coconut, castor, cocoa or

ground nuts; cucurbits, such as pumpkins, cucumbers or melons; fibre plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruit or tangerines; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes or bell peppers; Lauraceae, such as avocado, Cinnamonium or camphor; and also tobacco, nuts, coffee, eggplants, sugarcane, tea, pepper, grapevines, hops, the plantain family, latex plants and ornamentals.

The active ingredients according to the invention are especially suitable for controlling Aphis craccivora, Diabrotica balteata, Heliothis virescens, Myzus persicae, Plutella xylostella and Spodoptera littoralis in cotton, vegetable, maize, rice and soya crops. The active ingredients according to the invention are further especially suitable for controlling Mamestra (preferably in vegetables), Cydia pomonella (preferably in apples), Empoasca(preferably in vegetables, vine-

5

35

- ¹⁰ yards), Leptinotarsa (preferably in potatos) and Chilo supressalis (preferably in rice). The term "crops" is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.
- [0049] Toxins that can be expressed by such transgenic plants include, for example, insecticidal proteins, for example insecticidal proteins from Bacillus cereus or Bacillus popilliae; or insecticidal proteins from Bacillus thuringiensis, such as 8-endotoxins, e.g. Cry1Ab, Cry1Ac, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), e.g. Vip1, Vip2, Vip3 or Vip3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp. or Xenorhabdus spp., such as Photorhabdus luminescens, Xenorhabdus nematophilus; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins; toxins
- 20 produced by fungi, such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors, HMG-COA-reductase, ion channel blockers, such as blockers of sodium or calcium channels, juvenile hormone
- esterase, diuretic hormone receptors, stilbene synthase, bibenzyl synthase, chitinases and glucanases.
 In the context of the present invention there are to be understood by δ-endotoxins, for example Cry1Ab, Cry1Ac, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), for example Vip1, Vip2, Vip3 or Vip3A, expressly also hybrid toxins, truncated toxins and modified toxins. Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701). Truncated toxins, for
- 30 example a truncated Cry1Ab, are known. In the case of modified toxins, one or more amino acids of the naturally occurring toxin are replaced. In such amino acid replacements, preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of Cry3A055, a cathepsin-G-recognition sequence is inserted into a Cry3A toxin (see WO 03/018810).

Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878 and WO 03/052073.

- The processes for the preparation of such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Cryl-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 and WO 90/13651. The toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects. Such insects can occur
- in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and moths (Lepidoptera).
 Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins

are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a Cry1Ab toxin); YieldGard Rootworm® (maize variety that expresses a Cry3Bb1 toxin); YieldGard Plus®

- (maize variety that expresses a Cry1Ab and a Cry3Bb1 toxin); Starlink® (maize variety that expresses a Cry9C toxin); Herculex I® (maize variety that expresses a Cry1 Fa2 toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a Cry1Ac toxin); Bollgard I® (cotton variety that expresses a Cry1Ac toxin); Bollgard II® (cotton variety that expresses a Cry1Ac and a Cry2Ab toxin); VipCot® (cotton variety that expresses a Vip3A and a Cry1Ab toxin); NewLeaf® (potato variety
- 50 that expresses a Cry3A toxin); Nature-Gard®, Agrisure® GT Advantage (GA21 glyphosate-tolerant trait), Agrisure® CB Advantage (Bt11 corn borer (CB) trait) and Protecta®. Further examples of such transgenic crops are:
- Bt11 Maize from Syngenta Seeds SAS, Chemin de l'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea *mays* which has been rendered resistant to attack by the European corn borer (*Ostrinia nubilalis* and *Sesamia nonagrioides*) by transgenic expression of a truncated Cry1Ab toxin. Bt11 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.
 Bt176 Maize from Syngenta Seeds SAS, Chemin de l'Hobit 27, F-31 790 St. Sauveur, France, registration number

C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer (Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a Cry1Ab toxin. Bt176 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.

3. MIR604 Maize from Syngenta Seeds SAS, Chemin de l'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect-resistant by transgenic expression of a modified Cry3A toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-G-protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.

4. MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a Cry3Bb1 toxin and has resistance to certain Coleoptera insects.

10 5. IPC 531 Cotton from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/ES/96/02.

6. 1507 Maize from Pioneer Overseas Corporation, Avenue Tedesco, 7 B-1160 Brussels, Belgium, registration number C/NL/00/10. Genetically modified maize for the expression of the protein Cry1 F for achieving resistance to certain Lepidoptera insects and of the PAT protein for achieving tolerance to the herbicide glufosinate ammonium.

- 15 7. NK603 × MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810. NK603 imes MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a Cry1Ab toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about toler-20
- ance to certain Lepidoptera, include the European corn borer.

Transgenic crops of insect-resistant plants are also described in BATS (Zentrum für Biosicherheit und Nachhaltigkeit, Zentrum BATS, Clarastrasse 13, 4058 Basel, Switzerland) Report 2003, (http://bats.ch).

The term "crops" is to be understood as including also crop plants which have been so transformed by the use of 25 recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as, for example, the so-called "pathogenesis-related proteins" (PRPs, see e.g. EP-A-0 392 225). Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-0 392 225, WO 95/33818 and EP-A-0 353 191. The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned 30 above.

[0050] Antipathogenic substances which can be expressed by such transgenic plants include, for example, ion channel blockers, such as blockers for sodium and calcium channels, for example the viral KP1, KP4 or KP6 toxins; stilbene synthases; bibenzyl synthases; chitinases; glucanases; the so-called "pathogenesis-related proteins" (PRPs; see e.g. EP-A-0 392 225); antipathogenic substances produced by microorganisms, for example peptide antibiotics or heterocyclic

- 35 antibiotics (see e.g. WO 95/33818) or protein or polypeptide factors involved in plant pathogen defence (so-called "plant disease resistance genes", as described in WO 03/000906). Further areas of use of the compositions according to the invention are the protection of stored goods and storerooms and the protection of raw materials, such as wood, textiles, floor coverings or buildings, and also in the hygiene sector, especially the protection of humans, domestic animals and productive livestock against pests of the mentioned type.
- 40 In the hygiene sector, the compositions according to the invention are active against ectoparasites such as hard ticks, soft ticks, mange mites, harvest mites, flies (biting and licking), parasitic fly larvae, lice, hair lice, bird lice and fleas. Examples of such parasites are:
 - Of the order Anoplurida: Haematopinus spp., Linognathus spp., Pediculus spp. and Phtirus spp., Solenopotes spp..
- 45

5

[0051] Of the order Mallophagida: Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp.,

Lepikentron spp., Damalina spp., Trichodectes spp. and Felicola spp..

[0052] Of the order Diptera and the suborders Nematocerina and Brachycerina, for example Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., 50 Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp. and Melophagus spp..

- [0053] Of the order Siphonapterida, for example Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus 55 SDD..
 - Of the order Heteropterida, for example Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp.. [0054]

[0055] Of the order Blattarida, for example Blatta orientalis, Periplaneta americana, Blattelagermanica and Supella spp..

[0056] Of the subclass Acaria (Acarida) and the orders Meta- and Meso-stigmata, for example Argas spp., Ornithodorus spp., Otobius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp. and Varroa spp., [0057] Of the orders Actinedida (Prostigmata) and Acaridida (Astigmata), for example Acarapis spp., Cheyletiella spp.,

Ornithocheyletia spp., Myobia spp., Psorergatesspp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp. and Laminosioptes spp..

10

[0058] The compositions according to the invention are also suitable for protecting against insect infestation in the case of materials such as wood, textiles, plastics, adhesives, glues, paints, paper and card, leather, floor coverings and buildings.

The compositions according to the invention can be used, for example, against the following pests: beetles such as Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinuspecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthesrugicollis, Xyleborus spec., Tryptodendron spec., Apate monachus, Bostrychus

- ¹⁵ capucins, Heterobostrychus brunneus, Sinoxylon spec. and Dinoderus minutus, and also hymenopterans such as Sirex juvencus, Urocerus gigas, Urocerus gigas taignus and Urocerus augur, and termites such as Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis and Coptotermes formosanus, and bristletails such as Lepisma saccharina.
- 20 [0059] The invention therefore also relates to pesticidal compositions such as emulsifiable concentrates, suspension concentrates, microemulsions, oil dispersibles, directly sprayable or dilutable solutions, spreadable pastes, dilute emulsions, soluble powders, dispersible powders, wettable powders, dusts, granules or encapsulations in polymeric substances, which comprise at least one of the active ingredients according to the invention and which are to be selected to suit the intended aims and the prevailing circumstances.
- In these compositions, the active ingredient is employed in pure form, a solid active ingredient for example in a specific particle size, or, preferably, together with at least one of the auxiliaries conventionally used in the art of formulation, such as extenders, for example solvents or solid carriers, or such as surface-active compounds (surfactants). Examples of suitable solvents are: unhydrogenated or partially hydrogenated aromatic hydrocarbons, preferably the
- fractions C₈ to C₁₂ of alkylbenzenes, such as xylene mixtures, alkylated naphthalenes or tetrahydronaphthalene, aliphatic
 or cycloaliphatic hydrocarbons, such as paraffins or cyclohexane, alcohols such as ethanol, propanol or butanol, glycols and their ethers and esters such as propylene glycol, dipropylene glycol ether, ethylene glycol or ethylene glycol monomethyl ether or ethylene glycol monoethyl ether, ketones, such as cyclohexanone, isophorone or diacetone alcohol, strongly polar solvents, such as N-methylpyrrolid-2-one, dimethyl sulfoxide or N,N-dimethylformamide, water, unepoxidized or epoxidized vegetable oils, such as unexpodized or epoxidized rapeseed, castor, coconut or soya oil, and silicone oils.
- Solid carriers which are used for example for dusts and dispersible powders are, as a rule, ground natural minerals such as calcite, talc, kaolin, montmorillonite or attapulgite. To improve the physical properties, it is also possible to add highly disperse silicas or highly disperse absorbtive polymers. Suitable particulate adsorptive carriers for granules are porous types, such as pumice, brick grit, sepiolite or bentonite, and suitable non-sorptive carrier materials are calcite or sand.
- ⁴⁰ In addition, a large number of granulated materials of inorganic or organic nature can be used, in particular dolomite or comminuted plant residues.

[0060] Suitable surface-active compounds are, depending on the type of the active ingredient to be formulated, nonionic, cationic and/or anionic surfactants or surfactant mixtures which have good emulsifying, dispersing and wetting properties. The surfactants mentioned below are only to be considered as examples; a large number of further surfactants

⁴⁵ which are conventionally used in the art of formulation and suitable according to the invention are described in the relevant literature. Suitable non-ionic surfactants are, especially, polyglycol ether derivatives of aliphatic or cycloaliphatic alcohols, of saturated or unacturated forth oxide or of alled phonels which may contain approximately 2 to approximately 20 glycol ether

urated or unsaturated fatty acids or of alkyl phenols which may contain approximately 3 to approximately 30 glycol ether groups and approximately 8 to approximately 20 carbon atoms in the (cyclo)aliphatic hydrocarbon radical or approximately

- ⁵⁰ 6 to approximately 18 carbon atoms in the alkyl moiety of the alkyl phenols. Also suitable are water-soluble polyethylene oxide adducts with polypropylene glycol, ethylenediaminopolypropylene glycol or alkyl polypropylene glycol having 1 to approximately 10 carbon atoms in the alkyl chain and approximately 20 to approximately 250 ethylene glycol ether groups and approximately 10 to approximately 100 propylene glycol ether groups. Normally, the abovementioned compounds contain 1 to approximately 5 ethylene glycol units per propylene glycol unit. Examples which may be mentioned
- ⁵⁵ are nonylphenoxypolyethoxyethanol, castor oil polyglycol ether, polypropylene glycol/polyethylene oxide adducts, tributylphenoxypolyethoxyethanol, polyethylene glycol or octylphenoxypolyethoxyethanol. Also suitable are fatty acid esters of polyoxyethylene sorbitan, such as polyoxyethylene sorbitan trioleate. The cationic surfactants are, especially, quarternary ammonium salts which generally have at least one alkyl radical of approximately 8 to approximately 22 C atoms

as substituents and as further substituents (unhalogenated or halogenated) lower alkyl or hydroxyalkyl or benzyl radicals. The salts are preferably in the form of halides, methylsulfates or ethylsulfates. Examples are stearyltrimethylammonium chloride and benzylbis(2-chloroethyl)ethylammonium bromide.

- Examples of suitable anionic surfactants are water-soluble soaps or water-soluble synthetic surface-active compounds.
 Examples of suitable soaps are the alkali, alkaline earth or (unsubstituted or substituted) ammonium salts of fatty acids having approximately 10 to approximately 22 C atoms, such as the sodium or potassium salts of oleic or stearic acid, or of natural fatty acid mixtures which are obtainable for example from coconut or tall oil; mention must also be made of the fatty acid methyl taurates. However, synthetic surfactants are used more frequently, in particular fatty sulfonates, fatty sulfates, sulfonated benzimidazole derivatives or alkylaryl sulfonates. As a rule, the fatty sulfonates and fatty sulfates
- ¹⁰ are present as alkali, alkaline earth or (substituted or unsubstituted) ammonium salts and they generally have an alkyl radical of approximately 8 to approximately 22 C atoms, alkyl also to be understood as including the alkyl moiety of acyl radicals; examples which may be mentioned are the sodium or calcium salts of lignosulfonic acid, of the dodecylsulphuric ester or of a fatty alcohol sulfate mixture prepared from natural fatty acids. This group also includes the salts of the sulphuric esters and sulfonic acids of fatty alcohol/ethylene oxide adducts. The sulfonated benzimidazole derivatives
- ¹⁵ preferably contain 2 sulphonyl groups and a fatty acid radical of approximately 8 to approximately 22 C atoms. Examples of alkylarylsulfonates are the sodium, calcium or triethanolammonium salts of decylbenzenesulfonic acid, of dibutylnaph-thalenesulfonic acid or of a naphthalenesulfonic acid/formaldehyde condensate. Also possible are, furthermore, suitable phosphates, such as salts of the phosphoric ester of a p-nonylphenol/(4-14)ethylene oxide adduct, or phospholipids. As a rule, the compositions comprise 0.1 to 99%, especially 0.1 to 95%, of active ingredient and 1 to 99.9%, especially
- 5 to 99.9%, of at least one solid or liquid adjuvant, it being possible as a rule for 0 to 25%, especially 0.1 to 20%, of the composition to be surfactants(% in each case meaning percent by weight). Whereas concentrated compositions tend to be preferred for commercial goods, the end consumer as a rule uses dilute compositions which have substantially lower concentrations of active ingredient. Preferred compositions are composed in particular as follows (% = percent by weight):

0	-
•	5
~	~
_	-

	Emulsifiable concentrates:		
20	active ingredient: surfactant: solvent:	1 to 95%, preferably 5 to 20% 1 to 30%, preferably 10 to 20 % 5 to 98%, preferably 70 to 85%	
50			
	Dusts:		
25	active ingredient:	0.1 to 10%, preferably 0.1 to 1%	
50	solid carrier:	99.9 to 90%, preferably 99.9 to 99%	
	Suspension concentrates:		
40	active ingredient:	5 to 75%, preferably 10 to 50%	
	water:	94 to 24%, preferably 88 to 30%	
	surfactant:	1 to 40%, preferably 2 to 30%	
45			
	Wettable powders:		
	active ingredient:	0.5 to 90%, preferably 1 to 80%	
	surfactant:	0.5 to 20%, preferably 1 to 15%	
50	solid carrier:	5 to 99%, preferably 15 to 98%	
	Granulates:		
55	active ingredient:	0.5 to 30%, preferably 3 to $\overline{15\%}$	
	solid carrier:	99.5 to 70%, preferably 97 to 85%	

Preparatory Examples:

Example 1: Preparation of 1-[5-(3-pyridyl)-1,3,4-thiadiazol-2-yl]-N-pyrimidin-2-yloxy-ethanimine (Compound 1.040)

5 [0061]

15

10

Step a: Preparation of 1-[5-(3-pyridyl)-1,3,4-thiadiazol-2-yl]ethanone oxime :

[0062] A suspension of 1-[5-(3-pyridyl)-1,3,4-thiadiazol-2-yl]ethanone (1.0g, 4.68 mmol, prepared according to WO 2010/006713) in 50ml EtOH was treated with hydroxylamine hydrochloride (0.345g, 4.91 mmol) and potassium carbonate (0.686g, 4.91 mmol), and stirred at room temperature, monitored by LCMS and TLC. After 3 hours, the mixture was concentrated *in vacuo* to approximately 10ml. Addition of saturated ammonium chloride gave a precipitate which was filtered, and washed successively with water, isopropanol, and tertiary-butyl methyl ether. This yielded 1-[5-(3-pyridyl)-1,3,4-thiadiazol-2-yl]ethanone oxime (577mg, 51 %) as a 5:1 mixture of isomers.

²⁵ LCMS: 220 (M+1).

¹H-NMR (in d₆-OMSO): Major isomer : 13.0 (br s, 1H); 9.21 (s, 1H); 8.78 (d, 1H); 8.50(d, 1H); 7.61 (dd, 1H); 2.51 ppm (s, 3H); Minor isomer: 12.4 13.0 (br s, 1H); 9.20 (s, 1H); 8.78 (d, 1H); 8.40(d, 1H); 7.61 (dd, 1H); 2.31 ppm (s, 3H).

<u>Step b:</u> 30

[0063] A solution of 1-[5-(3-pyridyl)-1,3,4-thiadiazol-2-yl]ethanone oxime (0.1g, 0.436mmol) in acetonitrile (5ml) was stirred at ambient temperature and treated with cesium carbonate (0.43g, 1.31mmol) and 2-chloropyrimidine (0.079g, 0.654mmol). The reaction mixture was allowed to stir at ambient temperature and monitored by TLC and LC/MS. After 2 days, the mixture was concentrated *in vacuo*. The residue was stirred with ethyl acetate, filtered and the ethyl acetate

³⁵ concentrated *in vacuo*. Purification by recrystallisation gave a single isomer of 1-[5-(3-pyridyl)-1,3,4-thiadiazol-2-yl]-N-pyrimidin-2-yloxy-ethanimine (70mg, 23%) in form of beige crystals.
 [0064] LCMS: 299 (M+1).
 ¹H-NMR (in d₄-MeOD): 9.29 (s, 1H); 8.76 (d, 2H); 8.55 (d, 1H); 8.50(d, 1H); 7.66 (dd, 1H); 7.39 (t, 1H): 2.79ppm (s, 3H).

- (a, a, b, b) = (a, b) = (a,
- 40 Example 2: Preparation of 1-[2-(3-pyridyl)thiazol-5-yl]-N-pyrimidin-2-yloxy-ethanimine (Compound No. 1.041):

45

50

55

(Compound No. 1.041A and 1.041B).

Step a: Preparation of N-methoxy-N-methyl-2-(3-pyridyl)thiazole-5-carboxamide:

[0066] A suspension of 2-(3-pyridyl)thiazole-5-carbonyl chloride (4.6g, 19.5mmol) prepared according to WO 2009/149858) in methylene chloride (100ml) was cooled to 0°C and treated with triethyl amine (6.03g, 58.4mmol), dimethylamino pyridine (12mg, 0.097mmol) and then N-methoxymethanamine hydrochloride (2.9g, 29.2mmol). The

^[0065]

mixture was allowed to warm up to ambient temperature and monitored by TLC and LC/MS. After completion, the reaction mixture was diluted with methylene chloride, washed with water, dried over magnesium sulfate, and the solvent removed by concentration *in vacuo*, to give 3.99g (82%) of N-methoxy-N-methyl-2-(3-pyridyl)thiazole-5-carboxamide as a pale solid.

⁵ [0067] LCMS: 250 (M+1).

¹H-NMR (in CDCl3): 9.24 (s, 1H); 8.72 (d, 1H); 8.64(s, 1H); 8.35 (d, 1H); 7.46 (dd, 1H); 3.83 (s, 3H); 3.42ppm (s, 3H).

Step b. Preparation of 1-[2-(3-pyridyl)thiazol-5-yl]ethanone:

- ¹⁰ **[0068]** A solution of N-methoxy-N-methyl-2-(3-pyridyl)thiazole-5-carboxamide (5.6g, 21.9mmol) in 150ml of THF was cooled to 0°C and treated with methyl magnesium bromide (8.4ml of a 3M solution in diethyl ether, 24.1mmol). The reaction was stirred at 0°C and shown to be complete by LC/MS and TLC after 1 Hr. The mixture was hydrolyzed with 5ml water and evaporated. The residue was taken up in 200ml of ethyl acetate and washed with 2x80ml water and 1x80ml brine. The organic phase were dried over Na₂SO₄, filtrated and concentrated *in vacuo* to give the title compound
- (4.4g, 98%) as orange crystals which were pure enough for the next step without further purification. LCMS: 206 (M+1).

¹H-NMR (in CDCl3): 9.124 (s, 1H); 8.80 (d, 1H); 8.39(d, 1H); 7.51 (dd, 1H); 2.87ppm (s, 3H).

20

[0069] A suspension of 1-[2-(3-pyridyl)thiazol-5-yl]ethanone (0.8g, 3.76 mmol) in 50ml EtOH was treated with hydroxylamine hydrochloride (0.277g, 3.95mmol) and potassium carbonate (0.551g, 3.95 mmol), and stirred at ambient temperature, monitored by LCMS and TLC, which indicated a ca. 1:1 mixture of isomer formation. After 3 hours, the mixture was concentrated *in vacuo* to approximately 10ml. Addition of saturated ammonium chloride gave Isomer A of the title

²⁵ product as a beige precipitate which was filtered, and washed successively with water, isopropanol, and tertiary-butyl methyl ether (yield 156mg). LCMS: 220 (M+1).

¹H-NMR (in d₆-OMSO): Isomer A : 11.58 (br s, 1H); 9.12 (s, 1H); 8.68 (d, 1H); 8.31 (d, 1H); 8.20 (s, 1H); 7.55 (dd, 1H); 2.22ppm (s, 3H).

³⁰ **[0070]** The filtrate from above was extracted with ethyl acetate, and the combined organic phases washed with brine, dried over Na₂SO₄ filtered and concentrated *in vacuo* to give 621 mg of a beige solid which was principally isomer B. LCMS: 220 (M+1).

¹H-NMR (in d₆-DMSO): Isomer B : 12.12 (br s, 1H); 9.20 (s, 1H); 8.69 (d, 1H); 8.40(s, 1H); 8.39 (d, 1H); 7.55 (dd, 1H); 2.31 ppm (s, 3H).

35

40

Step d Isomer A)

[0071] A suspension of 1-[2-(3-pyridyl)thiazol-5-yl]ethanone oxime (isomer A, 0.15g, 0.657mmol) in acetonitrile (5ml) was stirred at ambient temperature and treated with carbonate (0.648g, 1.97mmol) and 2-chloropyrimidine (0.119g, 0.985mmol) and allowed to stir at ambient temperature. After 2 days (80% conversion), the reaction mixture was concentrated *in vacuo* and the residue was stirred with ethyl acetate, filtered and the ethyl acetate concentrated *in vacuo*. Purification by flash chromatography eluting with ethyl acetate gave 1-[2-(3-pyridyl)thiazol-5-yl]-N-pyrimidin-2-yloxy-ethanimine (0.074g, 38%) as a single isomer as slightly yellow crystals. LCMS: 298(M+1).

⁴⁵ ¹H-NMR (in CDCl3): 9.30 (s, 1H); 8.71 (d, 2H); 8.39 (s, 1H); 8.35(d, 1H); 7.42 (dd, 1H); 7.15 (t, 1H): 2.68ppm (s, 3H).

Step d (Isomer B).

- [0072] A suspension of 1-[2-(3-pyridyl)thiazol-5-yl]ethanone oxime (76mg, 0.33mmol) and cesium carbonate (330mg, 1.0mmol) in acetonitrile (10ml) was stirred at ambient temperature and treated with 2-chlopyrimidine (60mg, 0.5mmol). The reaction was monitored by TLC and LC/MS until ca. 70% completion, and then concentrated *in vacuo*. The solid residue was stirred with ethyl acetate, filtered and concentrated *in vacuo*. The crude product was purified by flash chromatography, eluting with ethyl acetate:MeOH (95:5), to give isomer B of 1-[2-(3-pyridyl)thiazol-5-yl]-N-pyrimidin-2-yloxy-ethanimine (46mg, 46%) as white crystals.
- ⁵⁵ [0073] LCMS: 298(M+1).
 ¹H-NMR (in CDCl3): 9.23 (s, 1H); 8.71 (m, 3H); 8.30 (d, 1H); 8.18(s, 1H); 7.44 (dd, 1H); 7.13 (t, 1H): 2.64ppm (s, 3H).

Step c. Preparation of 1-[2-(3-pyridyl)thiazol-5-yl]ethanone oxime:

Example 3: Preparation of 1-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)-ethanone O-(5-chloro-pyrimidin-2-yl)-oxime Compound No. 1.017):

[0074]

5

10

15

Step a: Preparation of 2-bromo-4-methyl-5-acetylthiazole:

20

[0075] 2-Amino-4-methyl-5-acetylthiazole (0.5g, 3.2mmol) was suspended in acetonitrile (14ml) and stirred at ambient temperature. Copper II bromide (0.715g, 3.2mmol) was added, followed by isopentylnitrite (1.125g, 9.6mmol). The reaction mixture was heated to 60°C for a period of 3.5 hours. After cooling to ambient temperature, the solvent was removed by evaporation, and the crude material was purified by column chromatography using heptane: ethyl acetate (4:1) as eluent. The product was obtained as a light yellow oil. ¹H NMR (CDCl3): 2.5ppm (3H, s); 2.7ppm (3H, s).

25

Step b: Preparation of 2-(pyridin-3-yl)-4-methyl-5-acetylthiazole:

[0076] 2-Bromo-4-methyl-5-acetylthiazole (12.0g, 54.5mmol) was dissolved in a mixture of dimethoxyethane (180ml), 30 water (76ml) and ethanol (52ml). To this solution was then added 3-pyridineboronic acid (20.1g, 163.5mmol), tetrakis (PPh₃)palladium(0) (6.3g, 5.4mmol), and sodium carbonate (17.3g, 163.5mmol), and the reaction mixture was heated to 160°C in a microwave oven for a period of 1 hour. The reaction was allowed to cool to ambient temperature, the solvents were removed by evaporation, the residue taken up in ethyl acetate, and the mixture filtered through silica gel and celite. The ethyl acetate was washed with water, dried over magnesium sulfate, and the solvent removed by evap-35 oration. The crude product was purified by chromatograph and the product was obtained as a fawn colored solid. ¹H

NMR (CDCl3): 2.6ppm (3H, s); 2.8ppm (3H, s); 7.4ppm (1H, m); 8.25ppm (1H, m); 8.7ppm (1H, m); 9.2ppm (1H, m).

Step c: Preparation of 2-(Pyridin-3-yl)-4-methyl-5-ethanoneoximethiazole:

- 40 [0077] 2-(Pyridin-3-yl)-4-methyl-5-acetylthiazole (7.86g, 36mmol) was dissolved in pyridine (150ml) and stirred at ambient temperature. Hydroxylamine hydrochloride (25.0g, 360mmol) was added and the reaction mixture heated to 120°C for 20 hours. The reaction mixture was allowed to cool to ambient temperature, and the solvent removed by evaporation. The residue was then stirred with water, filtered and the solid dried under vacuum. The residue was further purified by heating with isopropanol (70ml), cooling and then filtering the solid. The product was obtained as a fawn
- 45 colored solid. ¹H NMR (CDCl3): 2.4ppm (3H, s); 2.7ppm (3H, s); 7.45ppm (1H, m); 8.4ppm (1H, m); 8.6ppm (1H, m); 9.3ppm (1H, m); 11.3 (1H, br.s).

Step d: Preparation of 1-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)-ethanone O-(5-chloro-pyrimidin-2-yl)-oxime (Compound 1.017):

50

[0078] 2-(Pyridin-3-yl)-4-methyl-5-ethanoneoximethiazole (0.06g, 0.26mmol) was dissolved in dimethylformamide (2.0ml). To this solution was added sodium hydride (0.012g, 0.28mmol, 60% solution in oil) at 10°C and the reaction was stirred at ambient temperature for 20 minutes. After cooling to 10°C, 2,5-dichloropyrimidine (0.058g, 0.39mmol) was added and the reaction was stirred at ambient temperature for 15 hours. The reaction mixture was poured onto ice water, and the solid isolated by filtration. The solid was further purified by stirring with toluene and evaporating the solvent under reduced pressure to remove any traces of water. The final product was isolated after drying as a solid with melting point 195-197°C. ¹H NMR (DMSO): 2.55ppm (3H, s); 2.7ppm (3H, s); 7.5ppm (1H, m); 8.3ppm (1H, m); 8.7ppm (1H,

55

m); 8.85ppm (2H, s); 9.15ppm (1H, m).

[0079] In the drawings, free radicals signify an methyl group. For example, compound No. 1.012

5 10			N CI (1.003)	
15			N	
	can also be dr	awn as:		
20			CH ₃	
25			(1.003)	
30			N Stra	
		Compound No.	Structure	Phys. Data
35		1.001		000 00080
40				m.p. 200-202 °C
45		1.002	N-O N-O	m.p. 152-154°C
50			N S V	

	Compound No.	Structure	Phys. Data
5 10	1.003		m.p. 169-171°C
20	1.004	N N S N N	m.p. 179-181°C
25	1.005	N-O-N-O-N-O-N-O-N-O-N-O-N-O-N-O-N-O-N-O	m.p. 167-169°C
30 35	1.006		LCMS: 414 (M+1)
40 45	1.007		m.p. 126-128°C
50	1.008		m.p. 161-162°C

	Compound No.	Structure	Phys. Data
5 10	1.009	N N N N N N N N N N N N N N N N N N N	m.p. 164-165°C
20	1.010	N-O N-O	m.p. 162-163°C
25	1.011	N S N N	m.p. 179-180°C
30 35	1.012	N N N N N N N N N N N N N N N N N N N	m.p. 197-198°C
40	1.013	N N N N N	m.p. 122-123°C
45 50	1.014	N N N N N N N N N N N N N N N N N N N	m.p. 145-147°C

	Compound No.	Structure	Phys. Data
5 10	1.015	N N N N N N N N N N N N N N N N N N N	m.p. 165-166°C
15	1.016	N-O N-O N-O	m.p. 161-163°C
25	1.017		m.p. 195-197°C
30 35	1.018	N-O N-O N-O	m.p. 174-176°C
40	1.019		LCMS: 455 (M+1)
<i>45</i> <i>50</i>	1.020	N O N S N	LCMS: 353 (M+1)
55	1.021		LCMS: 351 (M+1)

	Compound No.	Structure	Phys. Data
5 10	1.022		LCMS: 383 (M+1)
15	1.023		LCMS: 362 (M+1)
20	1.024		LCMS: 386 (M+1)
30	1.025		LCMS: 366 (M+1)
35	1.026		LCMS: 380 (M+1)
40	1.027		LCMS: 390 (M+1)
50	1.028	F F F	LCMS: 423 (M+1)

5 1.029 1.029 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.031 1.031 1.031 1.030 1.031 1.031 1.030 1.031 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.035 1.032 1.035 1.035 1.032 1.035 1.032 1.035 1.035 1.032 1.035	3
15 1.030 1.030 1.031 1.031 1.031 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.031 1.032 1.031 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.035 1.032 1.035 1.032 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.032 1.035 1.035 1.032 1.035 1.032 1.035 1.035 1.032 1.035 1.035 1.032 1.035 1.032 1.035 1.035 1.035 1.035 1.032 1.035 1.03	1+1)
20 1.031 N + N = 0 N + N = 0 N = 1.032 1.032 1.032 N = 0 N = 1.032 1.0	1+1)
30 1.032	1+1)
	1+1)
35 1.033	1+1)
45 1.034 1.034 LCMS: 398 (M-	1+1)
50 50 50 55 50 1.035 0 N N N N N N N N N N N N N	1+1)

	Compound No.	Structure	Phys. Data
5 10	1.036		LCMS: 395 (M+1)
15	1.037		LCMS: 440 (M+1)
20 25	1.038		LCMS: 428 (M+1)
30	1.039		LCMS: 366 (M+1)
35 40	1.040		LCMS: 299 (M+1)
45	1.041A	$ \begin{array}{c} $	LCMS: 298(M+1)
50	1.041B		LCMS: 298 (M+1)
55		Isomer B	

(continued)

Compound No.	Structure	Phys. Data
1.042		LCMS: 380 (M+1)

10

5

LCMS method:

LCMS:

- ¹⁵ [0080] LCMS. Spectra were recorded on a ACQUITY SQD Mass Spectrometer (Waters Corp. Milford, MA, USA) mass spectrometer equipped with an electrospray source (ESI; source temperature 150 °C; desolvation temperature 400 °C; cone voltage 20 V; cone gas flow 60 I/hour, desolvation gas flow 700 I/hour, mass range: 100 to 800 Da) and a Waters ACQUITY UPLC (column: Waters ACQUITY UPLC HSS T3, 30 mm, Internal diameter of column: 2.1 mm; Particle Size: 1.8 micron; column temperature: 60 °C; flow rate 0.75 ml/min; eluent A: Water/Methanol 9:1,0.1% formic acid; eluent B:
- ²⁰ Acetonitrile,0.1 % formic acid; gradient: 0 min 5% B; 2-2.8 (6-7.7) min 100% B; 2.9-3 (7.8-8) min 5% B; UV-detection: 210-500 nm, resolution 2 nm. The flow was split postcolumn prior to MS analysis.
 [0081] The compounds according to the following tables can be prepared analogously. The examples which follow are intended to illustrate the invention and show preferred compounds of formula I.

²⁵ <u>Formulation examples</u> (% = percent by weight)

[0082]

20	Example F1: Emulsion concentrates	a)	b)	c)
30	Active ingredient	25 %	40 %	50 %
	Calcium dodecylbenzenesulfonate	5 %	8 %	6 %
	Castor oil polyethylene			
	glycol ether (36 mol of EO)	5%	-	-
35	Tributylphenoxypolyethylene glycol			
	ether (30 mol of EO)	-	12 %	4 %
	Cyclohexanone	-	15 %	20 %
	Xylene mixture	65%	25 %	20 %

40

[0083] Emulsions of any desired concentration can be prepared from such concentrates by dilution with water.

	Example F2: Solutions	a)	b)	c)	d)
45	Active ingredient Ethylene glycol monomethyl	80 %	10 %	5 %	95 %
	ether	20 % -		-	-
	Polyethylene glycol				
	MW 400	-	70 % -		-
50	N-Methylpyrrolid-2-one	-	20 % -		-
	Epoxidized coconut oil	-	-	1 %	5 %
	Petroleum ether				
	(boiling range: 160-190°)	-	-	94 %	-

55

[0084] The solutions are suitable for use in the form of microdrops.

Example F3: Granules	a)	b)	c)	d)
Active ingredient	5 %	10 %	8 %	21 %
Kaolin	94 %	-	79 %	54 %
Highly disperse silica	1 %	-	13 %	7 %
Attapulgite	-	90 %	-	18 %

[0085] The active ingredient is dissolved in dichloromethane, the solution is sprayed onto the carrier(s), and the solvent is subsequently evaporated in vacuo.

a)	b)
2 %	5 %
1 %	5 %
97 %	-
-	90 %
	a) 2 % 1 % 97 %

[0086] Ready-to-use dusts are obtained by intimately mixing the carriers and the active ingredient.

20	Example F5: Wettable powders	a)	b)	c)
	Active ingredient	25 %	50 %	75 %
	Sodium lignosulfonate	5 %	5 %	-
	Sodium lauryl sulfate	3 %	-	5 %
25	Sodium diisobutyl-			
	naphthalenesulfonate	-	6 %	10 %
	Octylphenoxypolyethylene glycol			
	ether (7-8 mol of EO)	-	2 %	-
	Highly disperse silica	5 %	10 %	10 %
30	Kaolin	62 %	27 %	-

[0087] The active ingredient is mixed with the additives and the mixture is ground thoroughly in a suitable mill. This gives wettable powders, which can be diluted with water to give suspensions of any desired concentration.

		-
		۰.
		7
	•	-

5

10

15

35	Example F6: Extruder granules	
	Active ingredient	10 %
	Sodium lignosulfonate	2 %
40	Carboxymethylcellulose	1 %
40	Kaolin	87 %

[0088] The active ingredient is mixed with the additives, and the mixture is ground, moistened with water, extruded, granulated and dried in a stream of air.

45

Example F7: Coated granules	
Active ingredient	3 %
Polyethylene glycol (MW 200)	3 %
Kaolin	94 %

50

[0089] In a mixer, the finely ground active ingredient is applied uniformLy to the kaolin, which has been moistened with the polyethylene glycol. This gives dust-free coated granules.

55
00

Example F8: Suspension concentrate

Active ingredient	40 %
Ethylene glycol	10 %

					۰.
- 1	\sim	nti	nu	00	۱.
- 17	ເມ			eu	
	~~	• • • •	•••		1

	Example F8: Suspension concentrate					
	Nonylphenoxypolyethylene glycol ether (15 mol of EO)	6 %				
;	Sodium lignosulfonate	10 %				
	Carboxymethylcellulose	1 %				
	37 % aqueous formaldehyde solution	0.2 %				
	Silicone oil (75 % aqueous emulsion)	0.8 %				
2	Water	32 %				
/						

10

5

[0090] The finely ground active ingredient is mixed intimately with the additives. Suspensions of any desired concentration can be prepared from the thus resulting suspension concentrate by dilution with water.

- The activity of the compositions according to the invention can be broadened considerably, and adapted to prevailing circumstances, by adding other insecticidally, acaricidally and/or fungicidally active ingredients. The mixtures of the compounds of formula I with other insecticidally, acaricidally and/or fungicidally active ingredients may also have further surprising advantages which can also be described, in a wider sense, as synergistic activity. For example, better tolerance by plants, reduced phytotoxicity, insects can be controlled in their different development stages or better behaviour during their production, for example during grinding or mixing, during their storage or during their use.
- Suitable additions to active ingredients here are, for example, representatives of the following classes of active ingredients: organophosphorus compounds, nitrophenol derivatives, thioureas, juvenile hormones, formamidines, benzophenone derivatives, ureas, pyrrole derivatives, carbamates, pyrethroids, chlorinated hydrocarbons, acylureas, pyridyl-methyleneamino derivatives, macrolides, neonicotinoids and Bacillus thuringiensis preparations.

[0091] The following mixtures of the compounds of formula I with active ingredients are preferred (the abbreviation "TX" means "one compound selected from the group consisting of the compounds of formulae 1.001 to 1.042 described

in Tables P of the present invention"):

an adjuvant selected from the group of substances consisting of petroleum oils (alternative name) (628) + TX, an acaricide selected from the group of substances consisting of 1,1-bis(4-chlorophenyl)-2-ethoxyethanol (IUPAC

name) (910) + TX, 2,4-dichlorophenyl benzenesulfonate (IUPAC/Chemical Abstracts name) (1059) + TX, 2-fluoro-30 N-methyl-N-1-naphthylacetamide (IUPAC name) (1295) + TX, 4-chlorophenyl phenyl sulfone (IUPAC name) (981) + TX, abamectin (1) + TX, acequinocyl (3) + TX, acetoprole [CCN] + TX, acrinathrin (9) + TX, aldicarb (16) + TX, aldoxycarb (863) + TX, alpha-cypermethrin (202) + TX, amidithion (870) + TX, amidoflumet [CCN] + TX, amidothioate (872) + TX, amiton (875) + TX, amiton hydrogen oxalate (875) + TX, amitraz (24) + TX, aramite (881) + TX, arsenous oxide (882) + TX, AVI 382 (compound code) + TX, AZ 60541 (compound code) + TX, azinphos-ethyl (44) + TX, 35 azinphos-methyl (45) + TX, azobenzene (IUPAC name) (888) + TX, azocyclotin (46) + TX, azothoate (889) + TX, benomyl (62) + TX, benoxafos (alternative name) [CCN] + TX, benzoximate (71) + TX, benzyl benzoate (IUPAC name) [CCN] + TX, bifenazate (74) + TX, bifenthrin (76) + TX, binapacryl (907) + TX, brofenvalerate (alternative name) + TX, bromocyclen (918) + TX, bromophos (920) + TX, bromophos-ethyl (921) + TX, bromopropylate (94) + TX, buprofezin (99) + TX, butocarboxim (103) + TX, butoxycarboxim (104) + TX, butylpyridaben (alternative name) 40 + TX, calcium polysulfide (IUPAC name) (111) + TX, camphechlor (941) + TX, carbanolate (943) + TX, carbaryl (115) + TX, carbofuran (118) + TX, carbophenothion (947) + TX, CGA 50'439 (development code) (125) + TX, chinomethionat (126) + TX, chlorbenside (959) + TX, chlordimeform (964) + TX, chlordimeform hydrochloride (964) + TX, chlorfenapyr (130) + TX, chlorfenethol (968) + TX, chlorfenson (970) + TX, chlorfensulphide (971) + TX, chlorfenvinphos (131) + TX, chlorobenzilate (975) + TX, chloromebuform (977) + TX, chloromethiuron (978) + TX, 45 chloropropylate (983) + TX, chlorpyrifos (145) + TX, chlorpyrifos-methyl (146) + TX, chlorthiophos (994) + TX, cinerin I (696) + TX, cinerin II (696) + TX, cinerins (696) + TX, clofentezine (158) + TX, closantel (alternative name) [CCN] + TX, coumaphos (174) + TX, crotamiton (alternative name) [CCN] + TX, crotoxyphos (1010) + TX, cufraneb (1013) + TX, cyanthoate (1020) + TX, cyflumetofen (CAS Reg. No.: 400882-07-7) + TX, cyhalothrin (196) + TX, cyhexatin (199) + TX, cypermethrin (201) + TX, DCPM (1032) + TX, DDT (219) + TX, demephion (1037) + TX, demephion-50 O (1037) + TX, demephion-S (1037) + TX, demeton (1038) + TX, demeton-methyl (224) + TX, demeton-O (1038) + TX, demeton-O-methyl (224) + TX, demeton-S (1038) + TX, demeton-S-methyl (224) + TX, demeton-S-methylsulphon (1039) + TX, diafenthiuron (226) + TX, dialifos (1042) + TX, diazinon (227) + TX, dichlofluanid (230) + TX, dichlorvos (236) + TX, dicliphos (alternative name) + TX, dicofol (242) + TX, dicrotophos (243) + TX, dienochlor (1071) + TX, dimefox (1081) + TX, dimethoate (262) + TX, dinactin (alternative name) (653) + TX, dinex (1089) + 55 TX, dinex-diclexine (1089) + TX, dinobuton (269) + TX, dinocap (270) + TX, dinocap-4 [CCN] + TX, dinocap-6 [CCN] + TX, dinocton (1090) + TX, dinopenton (1092) + TX, dinosulfon (1097) + TX, dinoterbon (1098) + TX, dioxathion (1102) + TX, diphenyl sulfone (IUPAC name) (1103) + TX, disulfiram (alternative name) [CCN] + TX, disulfoton

(278) + TX, DNOC (282) + TX, dofenapyn (1113) + TX, doramectin (alternative name) [CCN] + TX, endosulfan (294) + TX, endothion (1121) + TX, EPN (297) + TX, eprinomectin (alternative name) [CCN] + TX, ethion (309) + TX, ethoate-methyl (1134) + TX, etoxazole (320) + TX, etrimfos (1142) + TX, fenazaflor (1147) + TX, fenazaquin (328) + TX, fenbutatin oxide (330) + TX, fenothiocarb (337) + TX, fenpropathrin (342) + TX, fenpyrad (alternative name) 5 + TX, fenpyroximate (345) + TX, fenson (1157) + TX, fentrifanil (1161) + TX, fenvalerate (349) + TX, fipronil (354) + TX, fluacrypyrim (360) + TX, fluazuron (1166) + TX, flubenzimine (1167) + TX, flucycloxuron (366) + TX, flucythrinate (367) + TX, fluenetil (1169) + TX, flufenoxuron (370) + TX, flumethrin (372) + TX, fluorbenside (1174) + TX, fluvalinate (1184) + TX, FMC 1137 (development code) (1185) + TX, formetanate (405) + TX, formetanate hydrochloride (405) + TX, formothion (1192) + TX, formparanate (1193) + TX, gamma-HCH (430) + TX, glyodin (1205) + TX, halfenprox 10 (424) + TX, heptenophos (432) + TX, hexadecyl cyclopropanecarboxylate (IUPAC/Chemical Abstracts name) (1216) + TX, hexythiazox (441) + TX, iodomethane (IUPAC name) (542) + TX, isocarbophos (alternative name) (473) + TX, isopropyl O-(methoxyaminothiophosphoryl)salicylate (IUPAC name) (473) + TX, ivermectin (alternative name) [CCN] + TX, jasmolin I (696) + TX, jasmolin II (696) + TX, jodfenphos (1248) + TX, lindane (430) + TX, lufenuron (490) + TX, malathion (492) + TX, malonoben (1254) + TX, mecarbam (502) + TX, mephosfolan (1261) + TX, 15 mesulfen (alternative name) [CCN] + TX, methacrifos (1266) + TX, methamidophos (527) + TX, methidathion (529) + TX, methiocarb (530) + TX, methomyl (531) + TX, methyl bromide (537) + TX, metolcarb (550) + TX, mevinphos (556) + TX, mexacarbate (1290) + TX, milbemectin (557) + TX, milbemycin oxime (alternative name) [CCN] + TX, mipafox (1293) + TX, monocrotophos (561) + TX, morphothion (1300) + TX, moxidectin (alternative name) [CCN] + TX, naled (567) + TX, NC-184 (compound code) + TX, NC-512 (compound code) + TX, nifluridide (1309) + TX, 20 nikkomycins (alternative name) [CCN] + TX, nitrilacarb (1313) + TX, nitrilacarb 1:1 zinc chloride complex (1313) + TX, NNI-0101 (compound code) + TX, NNI-0250 (compound code) + TX, omethoate (594) + TX, oxamyl (602) + TX, oxydeprofos (1324) + TX, oxydisulfoton (1325) + TX, pp'-DDT (219) + TX, parathion (615) + TX, permethrin (626) + TX, petroleum oils (alternative name) (628) + TX, phenkapton (1330) + TX, phenthoate (631) + TX, phorate (636) + TX, phosalone (637) + TX, phosfolan (1338) + TX, phosmet (638) + TX, phosphamidon (639) + TX, phoxim 25 (642) + TX, pirimiphos-methyl (652) + TX, polychloroterpenes (traditional name) (1347) + TX, polynactins (alternative name) (653) + TX, proclonol (1350) + TX, profenofos (662) + TX, promacyl (1354) + TX, propargite (671) + TX, propetamphos (673) + TX, propoxur (678) + TX, prothidathion (1360) + TX, prothoate (1362) + TX, pyrethrin I (696) + TX, pyrethrin II (696) + TX, pyrethrins (696) + TX, pyridaben (699) + TX, pyridaphenthion (701) + TX, pyrimidifen (706) + TX, pyrimitate (1370) + TX, quinalphos (711) + TX, quintiofos (1381) + TX, R-1492 (development code) 30 (1382) + TX, RA-17 (development code) (1383) + TX, rotenone (722) + TX, schradan (1389) + TX, sebufos (alternative name) + TX, selamectin (alternative name) [CCN] + TX, SI-0009 (compound code) + TX, sophamide (1402) + TX, spirodiclofen (738) + TX, spiromesifen (739) + TX, SSI-121 (development code) (1404) + TX, sulfiram (alternative name) [CCN] + TX, sulfluramid (750) + TX, sulfotep (753) + TX, sulphur (754) + TX, SZI-121 (development code) (757) + TX, tau-fluvalinate (398) + TX, tebufenpyrad (763) + TX, TEPP (1417) + TX, terbam (alternative name) + TX, tetrachlorvinphos (777) + TX, tetradifon (786) + TX, tetranactin (alternative name) (653) + TX, tetrasul (1425) 35 + TX, thiafenox (alternative name) + TX, thiocarboxime (1431) + TX, thiofanox (800) + TX, thiometon (801) + TX, thioquinox (1436) + TX, thuringiensin (alternative name) [CCN] + TX, triamiphos (1441) + TX, triarathene (1443) + TX, triazophos (820) + TX, triazuron (alternative name) + TX, trichlorfon (824) + TX, trifenofos (1455) + TX, trinactin (alternative name) (653) + TX, vamidothion (847) + TX, vaniliprole [CCN] and YI-5302 (compound code) + TX, 40 an algicide selected from the group of substances consisting of bethoxazin [CCN] + TX, copper dioctanoate (IUPAC name) (170) + TX, copper sulfate (172) + TX, cybutryne [CCN] + TX, dichlone (1052) + TX, dichlorophen (232) + TX, endothal (295) + TX, fentin (347) + TX, hydrated lime [CCN] + TX, nabam (566) + TX, quinoclamine (714) + TX, quinonamid (1379) + TX, simazine (730) + TX, triphenyltin acetate (IUPAC name) (347) and triphenyltin hydroxide (IUPAC name) (347) + TX, 45 an anthelmintic selected from the group of substances consisting of abamectin (1) + TX, crufomate (1011) + TX, doramectin (alternative name) [CCN] + TX, emamectin (291) + TX, emamectin benzoate (291) + TX, eprinomectin (alternative name) [CCN] + TX, ivermectin (alternative name) [CCN] + TX, milbemycin oxime (alternative name) [CCN] + TX, moxidectin (alternative name) [CCN] + TX, piperazine [CCN] + TX, selamectin (alternative name) [CCN] + TX, spinosad (737) and thiophanate (1435) + TX, 50 an avicide selected from the group of substances consisting of chloralose (127) + TX, endrin (1122) + TX, fenthion

³⁵ an avidue selected from the group of substances consisting of chloralose (127) + 1X, endini (1122) + 1X, ientifion (346) + TX, pyridin-4-amine (IUPAC name) (23) and strychnine (745) + TX,
 a bactericide selected from the group of substances consisting of 1-hydroxy-1H-pyridine-2-thione (IUPAC name) (1222) + TX, 4-(quinoxalin-2-ylamino)benzenesulfonamide (IUPAC name) (748) + TX, 8-hydroxyquinoline sulfate (446) + TX, bronopol (97) + TX, copper dioctanoate (IUPAC name) (170) + TX, copper hydroxide (IUPAC name)
 ⁵⁵ (169) + TX, cresol [CCN] + TX, dichlorophen (232) + TX, dipyrithione (1105) + TX, dodicin (1112) + TX, fenaminosulf (1144) + TX, formaldehyde (404) + TX, hydrargaphen (alternative name) [CCN] + TX, kasugamycin (483) + TX, kasugamycin hydrochloride hydrate (483) + TX, nickel bis(dimethyldithiocarbamate) (IUPAC name) (1308) + TX, nitrapyrin (580) + TX, octhilinone (590) + TX, oxolinic acid (606) + TX, oxytetracycline (611) + TX, potassium

hydroxyquinoline sulfate (446) + TX, probenazole (658) + TX, streptomycin (744) + TX, streptomycin sesquisulfate (744) + TX, tecloftalam (766) + TX, and thiomersal (alternative name) [CCN] + TX,

- a biological agent selected from the group of substances consisting of Adoxophyes orana GV (alternative name) (12) + TX, Agrobacterium radiobacter (alternative name) (13) + TX, Amblyseius spp. (alternative name) (19) + TX,
 ⁵ Anagrapha falcifera NPV (alternative name) (28) + TX, Anagrus atomus (alternative name) (29) + TX, Aphelinus abdominalis (alternative name) (33) + TX, Aphidius colemani (alternative name) (34) + TX, Aphidoletes aphidimyza (alternative name) (35) + TX, Autographa californica NPV (alternative name) (38) + TX, Bacillus firmus (alternative name) (48) + TX, Bacillus sphaericus Neide (scientific name) (49) + TX, Bacillus thuringiensis Berliner (scientific
- name) (51) + TX, Bacillus thuringiensis subsp. aizawai (scientific name) (51) + TX, Bacillus thuringiensis subsp.
 israelensis (scientific name) (51) + TX, Bacillus thuringiensis subsp. japonensis (scientific name) (51) + TX, Bacillus thuringiensis subsp. japonensis (scientific name) (51) + TX, Bacillus thuringiensis subsp. tenebrionis (scientific name) (51) + TX, Bacillus thuringiensis subsp. tenebrionis (scientific name) (51) + TX, Bacillus thuringiensis subsp. tenebrionis (scientific name) (51) + TX, Beauveria bassiana (alternative name) (53) + TX, Beauveria brongniartii (alternative name) (54) + TX, Chrysoperla carnea (alternative name) (151) + TX, Cryptolaemus montrouzieri (alternative name) (178) + TX, Cydia pomonella GV (alternative name) (191) + TX, Dacnusa sibirica (alternative name) (212) + TX, Diglyphus isaea
- (alternative name) (254) + TX, Encarsia formosa (scientific name) (293) + TX, Eretmocerus eremicus (alternative name) (300) + TX, Helicoverpa zea NPV (alternative name) (431) + TX, Heterorhabditis bacteriophora and H. megidis (alternative name) (433) + TX, Hippodamia convergens (alternative name) (442) + TX, Leptomastix dactylopii (alternative name) (488) + TX, Macrolophus caliginosus (alternative name) (491) + TX, Mamestra brassicae NPV (alternative name) (494) + TX, Metaphycus helvolus (alternative name) (522) + TX, Metarhizium anisopliae var.
- 20 acridum (scientific name) (523) + TX, Metarhizium anisopliae var. anisopliae (scientific name) (523) + TX, Neodiprion sertifer NPV and N. lecontei NPV (alternative name) (575) + TX, Orius spp. (alternative name) (596) + TX, Paecilomyces fumosoroseus (alternative name) (613) + TX, Phytoseiulus persimilis (alternative name) (644) + TX, Spodoptera exigua multicapsid nuclear polyhedrosis virus (scientific name) (741) + TX, Steinernema bibionis (alternative name) (742) + TX, Steinernema carpocapsae (alternative name) (742) + TX, Steinernema feltiae (alternative name)
- 25 (742) + TX, Steinernema glaseri (alternative name) (742) + TX, Steinernema riobrave (alternative name) (742) + TX, Steinernema riobravis (alternative name) (742) + TX, Steinernema scapterisci (alternative name) (742) + TX, Steinernema spp. (alternative name) (742) + TX, Trichogramma spp. (alternative name) (826) + TX, Typhlodromus occidentalis (alternative name) (844) and Verticillium lecanii (alternative name) (848) + TX, steinernema (848) + TX, Steinernema (848) + TX, Steinernema (848) + TX, Trichogramma spp. (848) + TX, Trichogramma spp. (848) + TX, Typhlodromus occidentalis (848) + TX, Steinernema (848) + TX, Ste
- a soil sterilant selected from the group of substances consisting of iodomethane (IUPAC name) (542) and methyl 30 bromide (537) + TX,
- a chemosterilant selected from the group of substances consisting of apholate [CCN] + TX, bisazir (alternative name) [CCN]
 - an insect pheromone selected from the group of substances consisting of (*E*)-dec-5-en-1-yl acetate with (*E*)-dec-5-en-1-ol (IUPAC name) (222) + TX, (*E*)-tridec-4-en-1-yl acetate (IUPAC name) (829) + TX, (*E*)-6-methylhept-2-en-4-ol (IUPAC name) (541) + TX, (*E*,*Z*)-tetradeca-4,10-dien-1-yl acetate (IUPAC name) (779) + TX, (*Z*)-dodec-7-en-
- 40 1-yl acetate (IUPAC name) (285) + TX, (Z)-hexadec-11-enal (IUPAC name) (436) + TX, (Z)-hexadec-11-en-1-yl acetate (IUPAC name) (437) + TX, (Z)-hexadec-13-en-11-yl acetate (IUPAC name) (438) + TX, (Z)-icos-13-en-10-one (IUPAC name) (448) + TX, (Z)-tetradec-7-en-1-al (IUPAC name) (782) + TX, (Z)-tetradec-9-en-1-ol (IUPAC name) (783) + TX, (Z)-tetradec-9-en-1-yl acetate (IUPAC name) (784) + TX, (7*E*,9*Z*)-dodeca-7,9-dien-1-yl acetate (IUPAC name) (283) + TX, (9*Z*,11*E*)-tetradeca-9,11-dien-1-yl acetate (IUPAC name) (780) + TX, (9*Z*, 19*Z*)
- ⁴⁵ 12*E*)-tetradeca-9,12-dien-1-yl acetate (IUPAC name) (781) + TX, 14-methyloctadec-1-ene (IUPAC name) (545) + TX, 4-methylnonan-5-ol with 4-methylnonan-5-one (IUPAC name) (544) + TX, alpha-multistriatin (alternative name) [CCN] + TX, brevicomin (alternative name) [CCN] + TX, codlelure (alternative name) [CCN] + TX, codlemone (alternative name) (167) + TX, cuelure (alternative name) (179) + TX, disparlure (277) + TX, dodec-8-en-1-yl acetate (IUPAC name) (286) + TX, dodec-9-en-1-yl acetate (IUPAC name) (287) + TX, dodeca-8 + TX, 10-dien-1-yl acetate (IUPAC name) (284) + TX, dominicalure (alternative name) [CCN] + TX, ethyl 4-methyloctanoate (IUPAC name) (317) + TX, eugenol (alternative name) [CCN] + TX, frontalin (alternative name) [CCN] + TX, gossyplure (alternative name) (420) + TX, grandlure (421) + TX, grandlure I (alternative name) (421) + TX, hexalure [CCN]
- + TX, ipsdienol (alternative name) [CCN] + TX, ipsenol (alternative name) [CCN] + TX, japonilure (alternative name)
 (481) + TX, lineatin (alternative name) [CCN] + TX, litlure (alternative name) [CCN] + TX, looplure (alternative name)
 [CCN] + TX, medlure [CCN] + TX, megatomoic acid (alternative name) [CCN] + TX, methyl eugenol (alternative name)
 (540) + TX, muscalure (563) + TX, octadeca-2,13-dien-1-yl acetate (IUPAC name) (588) + TX, octadeca-3,13-dien-1-yl acetate (IUPAC name) (589) + TX, orfralure (alternative name) [CCN] + TX, oryctalure (alternative

name) (317) + TX, ostramone (alternative name) [CCN] + TX, siglure [CCN] + TX, sordidin (alternative name) (736) + TX, sulcatol (alternative name) [CCN] + TX, tetradec-11-en-1-yl acetate (IUPAC name) (785) + TX, trimedlure (839) + TX, trimedlure A (alternative name) (839) + TX, trimedlure B₁ (alternative name) (839) + TX, trimedlure B₂ (alternative name) (839) + TX, trimedlure C (alternative name) (839) and trunc-call (alternative name) [CCN] + TX, 5 an insect repellent selected from the group of substances consisting of 2-(octylthio)ethanol (IUPAC name) (591) + TX, butopyronoxyl (933) + TX, butoxy(polypropylene glycol) (936) + TX, dibutyl adipate (IUPAC name) (1046) + TX, dibutyl phthalate (1047) + TX, dibutyl succinate (IUPAC name) (1048) + TX, diethyltoluamide [CCN] + TX, dimethyl carbate [CCN] + TX, dimethyl phthalate [CCN] + TX, ethyl hexanediol (1137) + TX, hexamide [CCN] + TX, methoquinbutyl (1276) + TX, methylneodecanamide [CCN] + TX, oxamate [CCN] and picaridin [CCN] + TX, 10 an insecticide selected from the group of substances consisting of 1-dichloro-1-nitroethane (IUPAC/Chemical Abstracts name) (1058) + TX, 1,1-dichloro-2,2-bis(4-ethylphenyl)ethane (IUPAC name) (1056), + TX, 1,2-dichloropropane (IUPAC/Chemical Abstracts name) (1062) + TX, 1,2-dichloropropane with 1,3-dichloropropene (IUPAC name) (1063) + TX, 1-bromo-2-chloroethane (IUPAC/Chemical Abstracts name) (916) + TX, 2,2,2-trichloro-1-(3,4-dichlorophenyl)ethyl acetate (IUPAC name) (1451) + TX, 2,2-dichlorovinyl 2-ethylsulphinylethyl methyl phosphate (IUPAC 15 name) (1066) + TX, 2-(1,3-dithiolan-2-yl)phenyl dimethylcarbamate (IUPAC/ Chemical Abstracts name) (1109) + TX, 2-(2-butoxyethoxy)ethyl thiocyanate (IUPAC/Chemical Abstracts name) (935) + TX, 2-(4,5-dimethyl-1,3-dioxolan-2-yl)phenyl methylcarbamate (IUPAC/ Chemical Abstracts name) (1084) + TX, 2-(4-chloro-3,5-xylyloxy)ethanol (IUPAC name) (986) + TX, 2-chlorovinyl diethyl phosphate (IUPAC name) (984) + TX, 2-imidazolidone (IUPAC name) (1225) + TX, 2-isovalerylindan-1,3-dione (IUPAC name) (1246) + TX, 2-methyl(prop-2-ynyl)aminophenyl 20 methylcarbamate (IUPAC name) (1284) + TX, 2-thiocyanatoethyl laurate (IUPAC name) (1433) + TX, 3-bromo-1chloroprop-1-ene (IUPAC name) (917) + TX, 3-methyl-1-phenylpyrazol-5-yl dimethylcarbamate (IUPAC name) (1283) + TX, 4-methyl(prop-2-ynyl)amino-3,5-xylyl methylcarbamate (IUPAC name) (1285) + TX, 5,5-dimethyl-3oxocyclohex-1-enyl dimethylcarbamate (IUPAC name) (1085) + TX, abamectin (1) + TX, acephate (2) + TX, acetamiprid (4) + TX, acethion (alternative name) [CCN] + TX, acetoprole [CCN] + TX, acrinathrin (9) + TX, acrylonitrile 25 (IUPAC name) (861) + TX, alanycarb (15) + TX, aldicarb (16) + TX, aldoxycarb (863) + TX, aldrin (864) + TX, allethrin (17) + TX, allosamidin (alternative name) [CCN] + TX, allyxycarb (866) + TX, alpha-cypermethrin (202) + TX, alphaecdysone (alternative name) [CCN] + TX, aluminium phosphide (640) + TX, amidithion (870) + TX, amidothioate (872) + TX, aminocarb (873) + TX, amiton (875) + TX, amiton hydrogen oxalate (875) + TX, amitraz (24) + TX, anabasine (877) + TX, athidathion (883) + TX, AVI 382 (compound code) + TX, AZ 60541 (compound code) + TX, 30 azadirachtin (alternative name) (41) + TX, azamethiphos (42) + TX, azinphos-ethyl (44) + TX, azinphos-methyl (45) + TX, azothoate (889) + TX, Bacillus thuringiensis delta endotoxins (alternative name) (52) + TX, barium hexafluorosilicate (alternative name) [CCN] + TX, barium polysulfide (IUPAC/Chemical Abstracts name) (892) + TX, barthrin [CCN] + TX, Bayer 22/190 (development code) (893) + TX, Bayer 22408 (development code) (894) + TX, bendiocarb (58) + TX, benfuracarb (60) + TX, bensultap (66) + TX, beta-cyfluthrin (194) + TX, beta-cypermethrin (203) + TX, bifenthrin (76) + TX, bioallethrin (78) + TX, bioallethrin S-cyclopentenyl isomer (alternative name) (79) + TX, bioeth-35 anomethrin [CCN] + TX, biopermethrin (908) + TX, bioresmethrin (80) + TX, bis(2-chloroethyl) ether (IUPAC name) (909) + TX, bistrifluron (83) + TX, borax (86) + TX, brofenvalerate (alternative name) + TX, bromfenvinfos (914) + TX, bromocyclen (918) + TX, bromo-DDT (alternative name) [CCN] + TX, bromophos (920) + TX, bromophos-ethyl (921) + TX, bufencarb (924) + TX, buprofezin (99) + TX, butacarb (926) + TX, butathiofos (927) + TX, butocarboxim 40 (103) + TX, butonate (932) + TX, butoxycarboxim (104) + TX, butylpyridaben (alternative name) + TX, cadusafos (109) + TX, calcium arsenate [CCN] + TX, calcium cyanide (444) + TX, calcium polysulfide (IUPAC name) (111) + TX, camphechlor (941) + TX, carbanolate (943) + TX, carbaryl (115) + TX, carbofuran (118) + TX, carbon disulfide (IUPAC/Chemical Abstracts name) (945) + TX, carbon tetrachloride (IUPAC name) (946) + TX, carbophenothion (947) + TX, carbosulfan (119) + TX, cartap (123) + TX, cartap hydrochloride (123) + TX, cevadine (alternative name) 45 (725) + TX, chlorbicyclen (960) + TX, chlordane (128) + TX, chlordecone (963) + TX, chlordimeform (964) + TX, chlordimeform hydrochloride (964) + TX, chlorethoxyfos (129) + TX, chlorfenapyr (130) + TX, chlorfenvinphos (131) + TX, chlorfluazuron (132) + TX, chlormephos (136) + TX, chloroform [CCN] + TX, chloropicrin (141) + TX, chlorphoxim (989) + TX, chlorprazophos (990) + TX, chlorpyrifos (145) + TX, chlorpyrifos-methyl (146) + TX, chlorthiophos (994) + TX, chromafenozide (150) + TX, cinerin I (696) + TX, cinerin II (696) + TX, cinerins (696) + TX, cis-resmethrin (alternative name) + TX, cismethrin (80) + TX, clocythrin (alternative name) + TX, cloethocarb (999) + TX, closantel 50 (alternative name) [CCN] + TX, clothianidin (165) + TX, copper acetoarsenite [CCN] + TX, copper arsenate [CCN] + TX, copper oleate [CCN] + TX, coumaphos (174) + TX, coumithoate (1006) + TX, crotamiton (alternative name) [CCN] + TX, crotoxyphos (1010) + TX, crufomate (1011) + TX, cryolite (alternative name) (177) + TX, CS 708 (development code) (1012) + TX, cyanofenphos (1019) + TX, cyanophos (184) + TX, cyanthoate (1020) + TX, 55 cyclethrin [CCN] + TX, cycloprothrin (188) + TX, cyfluthrin (193) + TX, cyhalothrin (196) + TX, cypermethrin (201) + TX, cyphenothrin (206) + TX, cyromazine (209) + TX, cythioate (alternative name) [CCN] + TX, d-limonene (alternative name) [CCN] + TX, d-tetramethrin (alternative name) (788) + TX, DAEP (1031) + TX, dazomet (216) + TX, DDT (219) + TX, decarbofuran (1034) + TX, deltamethrin (223) + TX, demephion (1037) + TX, demephion-O

(1037) + TX, demephion-S (1037)+ TX, demeton (1038) + TX, demeton-methyl (224) + TX, demeton-O (1038) + TX, demeton-O-methyl (224) + TX, demeton-S (1038) + TX, demeton-S-methyl (224) + TX, demeton-S-methylsulphon (1039) + TX, diafenthiuron (226) + TX, dialifos (1042) + TX, diamidafos (1044) + TX, diazinon (227) + TX, dicapthon (1050) + TX, dichlofenthion (1051) + TX, dichlorvos (236) + TX, dicliphos (alternative name) + TX, dicresyl 5 (alternative name) [CCN] + TX, dicrotophos (243) + TX, dicyclanil (244) + TX, dieldrin (1070) + TX, diethyl 5methylpyrazol-3-yl phosphate (IUPAC name) (1076) + TX, diflubenzuron (250) + TX, dilor (alternative name) [CCN] + TX, dimefluthrin [CCN] + TX, dimetox (1081) + TX, dimetan (1085) + TX, dimethoate (262) + TX, dimethrin (1083) + TX, dimethylvinphos (265) + TX, dimetilan (1086) + TX, dinex (1089) + TX, dinex-diclexine (1089) + TX, dinoprop (1093) + TX, dinosam (1094) + TX, dinoseb (1095) + TX, dinotefuran (271) + TX, diofenolan (1099) + TX, dioxa-10 benzofos (1100) + TX, dioxacarb (1101) + TX, dioxathion (1102) + TX, disulfoton (278) + TX, dithicrofos (1108) + TX, DNOC (282) + TX, doramectin (alternative name) [CCN] + TX, DSP (1115) + TX, ecdysterone (alternative name) [CCN] + TX, El 1642 (development code) (1118) + TX, emamectin (291) + TX, emamectin benzoate (291) + TX, EMPC (1120) + TX, empenthrin (292) + TX, endosulfan (294) + TX, endothion (1121) + TX, endrin (1122) + TX, EPBP (1123) + TX, EPN (297) + TX, epofenonane (1124) + TX, eprinomectin (alternative name) [CCN] + TX, 15 esfenvalerate (302) + TX, etaphos (alternative name) [CCN] + TX, ethiofencarb (308) + TX, ethion (309) + TX, ethiprole (310) + TX, ethoate-methyl (1134) + TX, ethoprophos (312) + TX, ethyl formate (IUPAC name) [CCN] + TX, ethyl-DDD (alternative name) (1056) + TX, ethylene dibromide (316) + TX, ethylene dichloride (chemical name) (1136) + TX, ethylene oxide [CCN] + TX, etofenprox (319) + TX, etrimfos (1142) + TX, EXD (1143) + TX, famphur (323) + TX, fenamiphos (326) + TX, fenazaflor (1147) + TX, fenchlorphos (1148) + TX, fenethacarb (1149) + TX, 20 fenfluthrin (1150) + TX, fenitrothion (335) + TX, fenobucarb (336) + TX, fenoxacrim (1153) + TX, fenoxycarb (340) + TX, fenpirithrin (1155) + TX, fenpropathrin (342) + TX, fenpyrad (alternative name) + TX, fensulfothion (1158) + TX, fenthion (346) + TX, fenthion-ethyl [CCN] + TX, fenvalerate (349) + TX, fipronil (354) + TX, flonicamid (358) + TX, flubendiamide (CAS. Reg. No.: 272451-65-7) + TX, flucofuron (1168) + TX, flucycloxuron (366) + TX, flucythrinate (367) + TX, fluenetil (1169) + TX, flufenerim [CCN] + TX, flufenoxuron (370) + TX, flufenprox (1171) + TX, flumethrin 25 (372) + TX, fluvalinate (1184) + TX, FMC 1137 (development code) (1185) + TX, fonofos (1191) + TX, formetanate (405) + TX, formetanate hydrochloride (405) + TX, formothion (1192) + TX, formparanate (1193) + TX, fosmethilan (1194) + TX, fospirate (1195) + TX, fosthiazate (408) + TX, fosthietan (1196) + TX, furathiocarb (412) + TX, furethrin (1200) + TX, gamma-cyhalothrin (197) + TX, gamma-HCH (430) + TX, guazatine (422) + TX, guazatine acetates (422) + TX, GY-81 (development code) (423) + TX, halfenprox (424) + TX, halofenozide (425) + TX, HCH (430) + 30 TX, HEOD(1070)+TX, heptachlor (1211) + TX, heptenophos (432) + TX, heterophos [CCN] + TX, hexaflumuron (439) + TX, HHDN (864) + TX, hydramethylnon (443) + TX, hydrogen cyanide (444) + TX, hydroprene (445) + TX, hyquincarb (1223) + TX, imidacloprid (458) + TX, imiprothrin (460) + TX, indoxacarb (465) + TX, iodomethane (IUPAC name) (542) + TX, IPSP(1229) + TX, isazofos (1231) + TX, isobenzan (1232) + TX, isocarbophos (alternative name) (473) + TX, isodrin (1235) + TX, isofenphos (1236) + TX, isolane (1237) + TX, isoprocarb (472) + TX, isopropyl O-(methoxyaminothiophosphoryl)salicylate (IUPAC name) (473) + TX, isoprothiolane (474) + TX, isothioate (1244) 35 + TX, isoxathion (480) + TX, ivermectin (alternative name) [CCN] + TX, jasmolin I (696) + TX, jasmolin II (696) + TX, jodfenphos (1248) + TX, juvenile hormone I (alternative name) [CCN] + TX, juvenile hormone II (alternative name) [CCN] + TX, juvenile hormone III (alternative name) [CCN] + TX, kelevan (1249) + TX, kinoprene (484) + TX, lambda-cyhalothrin (198) + TX, lead arsenate [CCN] + TX, lepimectin (CCN) + TX, leptophos (1250) + TX, 40 lindane (430) + TX, lirimfos (1251) + TX, lufenuron (490) + TX, lythidathion (1253) + TX, m-cumenyl methylcarbamate (IUPAC name) (1014) + TX, magnesium phosphide (IUPAC name) (640) + TX, malathion (492) + TX, malonoben (1254) + TX, mazidox (1255) + TX, mecarbam (502) + TX, mecarphon (1258) + TX, menazon (1260) + TX, mephosfolan (1261) + TX, mercurous chloride (513) + TX, mesulfenfos (1263) + TX, metaflumizone (CCN) + TX, metam (519) + TX, metam-potassium (alternative name) (519) + TX, metam-sodium (519) + TX, methacrifos (1266) + TX, methamidophos (527) + TX, methanesulphonyl fluoride (IUPAC/Chemical Abstracts name) (1268) + TX, me-45 thidathion (529) + TX, methiocarb (530) + TX, methocrotophos (1273) + TX, methomyl (531) + TX, methoprene (532) + TX, methoquin-butyl (1276) + TX, methothrin (alternative name) (533) + TX, methoxychlor (534) + TX, methoxyfenozide (535) + TX, methyl bromide (537) + TX, methyl isothiocyanate (543) + TX, methylchloroform (alternative name) [CCN] + TX, methylene chloride [CCN] + TX, metofluthrin [CCN] + TX, metolcarb (550) + TX, 50 metoxadiazone (1288) + TX, mevinphos (556) + TX, mexacarbate (1290) + TX, milbemectin (557) + TX, milbemycin oxime (alternative name) [CCN] + TX, mipafox (1293) + TX, mirex (1294) + TX, monocrotophos (561) + TX, morphothion (1300) + TX, moxidectin (alternative name) [CCN] + TX, naftalofos (alternative name) [CCN] + TX, naled (567) + TX, naphthalene (IUPAC/Chemical Abstracts name) (1303) + TX, NC-170 (development code) (1306) + TX, NC-184 (compound code) + TX, nicotine (578) + TX, nicotine sulfate (578) + TX, nifluridide (1309) + TX, nitenpyram 55 (579) + TX, nithiazine (1311) + TX, nitrilacarb (1313) + TX, nitrilacarb 1:1 zinc chloride complex (1313) + TX, NNI-0101 (compound code) + TX, NNI-0250 (compound code) + TX, nornicotine (traditional name) (1319) + TX, novaluron (585) + TX, noviflumuron (586) + TX, O-5-dichloro-4-iodophenyl O-ethyl ethylphosphonothioate (IUPAC name) (1057) + TX, O,O-diethyl O-4-methyl-2-oxo-2H-chromen-7-yl phosphorothioate (IUPAC name) (1074) + TX, O,

O-diethyl O-6-methyl-2-propylpyrimidin-4-yl phosphorothioate (IUPAC name) (1075) + TX, O,O,O',O'-tetrapropyl dithiopyrophosphate (IUPAC name) (1424) + TX, oleic acid (IUPAC name) (593) + TX, omethoate (594) + TX, oxamyl (602) + TX, oxydemeton-methyl (609) + TX, oxydeprofos (1324) + TX, oxydisulfoton (1325) + TX, pp'-DDT (219) + TX, para-dichlorobenzene [CCN] + TX, parathion (615) + TX, parathion-methyl (616) + TX, penfluron (al-5 ternative name) [CCN] + TX, pentachlorophenol (623) + TX, pentachlorophenyl laurate (IUPAC name) (623) + TX, permethrin (626) + TX, petroleum oils (alternative name) (628) + TX, PH 60-38 (development code) (1328) + TX, phenkapton (1330) + TX, phenothrin (630) + TX, phenthoate (631) + TX, phorate (636) + TX, phosalone (637) + TX, phosfolan (1338) + TX, phosmet (638) + TX, phosnichlor (1339) + TX, phosphamidon (639) + TX, phosphine (IUPAC name) (640) + TX, phoxim (642) + TX, phoxim-methyl (1340) + TX, pirimetaphos (1344) + TX, pirimicarb 10 (651) + TX, pirimiphos-ethyl (1345) + TX, pirimiphos-methyl (652) + TX, polychlorodicyclopentadiene isomers (IUPAC name) (1346) + TX, polychloroterpenes (traditional name) (1347) + TX, potassium arsenite [CCN] + TX, potassium thiocyanate [CCN] + TX, prallethrin (655) + TX, precocene I (alternative name) [CCN] + TX, precocene II (alternative name) [CCN] + TX, precocene III (alternative name) [CCN] + TX, primidophos (1349) + TX, profenofos (662) + TX, profluthrin [CCN] + TX, promacyl (1354) + TX, promecarb (1355) + TX, propaphos (1356) + TX, propetamphos (673) 15 + TX, propoxur (678) + TX, prothidathion (1360) + TX, prothiofos (686) + TX, prothoate (1362) + TX, protrifenbute [CCN] + TX, pymetrozine (688) + TX, pyraclofos (689) + TX, pyrazophos (693) + TX, pyresmethrin (1367) + TX, pyrethrin I (696) + TX, pyrethrin II (696) + TX, pyrethrins (696) + TX, pyridaben (699) + TX, pyridalyl (700) + TX, pyridaphenthion (701) + TX, pyrimidifen (706) + TX, pyrimitate (1370) + TX, pyriproxyfen (708) + TX, quassia (alternative name) [CCN] + TX, quinalphos (711) + TX, quinalphosmethyl (1376) + TX, quinothion (1380) + TX, 20 quintiofos (1381) + TX, R-1492 (development code) (1382) + TX, rafoxanide (alternative name) [CCN] + TX, resmethrin (719) + TX, rotenone (722) + TX, RU 15525 (development code) (723) + TX, RU 25475 (development code) (1386) + TX, ryania (alternative name) (1387) + TX, ryanodine (traditional name) (1387) + TX, sabadilla (alternative name) (725) + TX, schradan (1389) + TX, sebufos (alternative name) + TX, selamectin (alternative name) [CCN] + TX, SI-0009 (compound code) + TX, SI-0205 (compound code) + TX, SI-0404 (compound code) + TX, SI-0405 25 (compound code) + TX, silafluofen (728) + TX, SN 72129 (development code) (1397) + TX, sodium arsenite [CCN] + TX, sodium cyanide (444) + TX, sodium fluoride (IUPAC/Chemical Abstracts name) (1399) + TX, sodium hexafluorosilicate (1400) + TX, sodium pentachlorophenoxide (623) + TX, sodium selenate (IUPAC name) (1401) + TX, sodium thiocyanate [CCN] + TX, sophamide (1402) + TX, spinosad (737) + TX, spiromesifen (739) + TX, spirotetrmat (CCN) + TX, sulcofuron (746) + TX, sulcofuron-sodium (746) + TX, sulfluramid (750) + TX, sulfotep 30 (753) + TX, sulphuryl fluoride (756) + TX, sulprofos (1408) + TX, tar oils (alternative name) (758) + TX, tau-fluvalinate (398) + TX, tazimcarb (1412) + TX, TDE (1414) + TX, tebufenozide (762) + TX, tebufenpyrad (763) + TX, tebupirimfos (764) + TX, teflubenzuron (768) + TX, tefluthrin (769) + TX, temephos (770) + TX, TEPP (1417) + TX, terallethrin (1418) + TX, terbam (alternative name) + TX, terbufos (773) + TX, tetrachloroethane [CCN] + TX, tetrachlorvinphos (777) + TX, tetramethrin (787) + TX, theta-cypermethrin (204) + TX, thiacloprid (791) + TX, thiafenox (alternative 35 name) + TX, thiamethoxam (792) + TX, thicrofos (1428) + TX, thiocarboxime (1431) + TX, thiocyclam (798) + TX, thiocyclam hydrogen oxalate (798) + TX, thiodicarb (799) + TX, thiofanox (800) + TX, thiometon (801) + TX, thionazin (1434) + TX, thiosultap (803) + TX, thiosultap-sodium (803) + TX, thuringiensin (alternative name) [CCN] + TX, tolfenpyrad (809) + TX, tralomethrin (812) + TX, transfluthrin (813) + TX, transpermethrin (1440) + TX, triamiphos (1441) + TX, triazamate (818) + TX, triazophos (820) + TX, triazuron (alternative name) + TX, trichlorfon (824) + 40 TX, trichlormetaphos-3 (alternative name) [CCN] + TX, trichloronat (1452) + TX, trifenofos (1455) + TX, triflumuron (835) + TX, trimethacarb (840) + TX, triprene (1459) + TX, vamidothion (847) + TX, vaniliprole [CCN] + TX, veratridine (alternative name) (725) + TX, veratrine (alternative name) (725) + TX, XMC (853) + TX, xylylcarb (854) + TX, Yl-5302 (compound code) + TX, zeta-cypermethrin (205) + TX, zetamethrin (alternative name) + TX, zinc phosphide (640) + TX, zolaprofos (1469) and ZXI 8901 (development code) (858) + TX, cyantraniliprole [736994-63-19 + TX, 45 chlorantraniliprole [500008-45-7] + TX, cyenopyrafen [560121-52-0] + TX, cyflumetofen [400882-07-7] + TX, pyrifluquinazon [337458-27-2] + TX, spinetoram [187166-40-1 + 187166-15-0] + TX, spirotetramat [203313-25-1] + TX, sulfoxaflor [946578-00-3] + TX, flufiprole [704886-18-0] + TX, meperfluthrin [915288-13-0] + TX, tetramethylfluthrin [84937-88-2] + TX, a molluscicide selected from the group of substances consisting of bis(tributyltin) oxide (IUPAC name) (913) + TX, 50 bromoacetamide [CCN] + TX, calcium arsenate [CCN] + TX, cloethocarb (999) + TX, copper acetoarsenite [CCN] + TX, copper sulfate (172) + TX, fentin (347) + TX, ferric phosphate (IUPAC name) (352) + TX, metaldehyde (518) + TX, methiocarb (530) + TX, niclosamide (576) + TX, niclosamide-olamine (576) + TX, pentachlorophenol (623) + TX, sodium pentachlorophenoxide (623) + TX, tazimcarb (1412) + TX, thiodicarb (799) + TX, tributyltin oxide (913)

+ TX, trifenmorph (1454) + TX, trimethacarb (840) + TX, triphenyltin acetate (IUPAC name) (347) and triphenyltin
 hydroxide (IUPAC name) (347) + TX, pyriprole [394730-71-3] + TX,
 a nematicide selected from the group of substances consisting of AKD-3088 (compound code) + TX, 1,2-dibromo 3-chloropropane (IUPAC/Chemical Abstracts name) (1045) + TX, 1,2-dichloropropane (IUPAC/ Chemical Abstracts name) (1062) + TX, 1,2-dichloropropane with 1,3-dichloropropene (IUPAC name) (1063) + TX, 1,3-dichloropropene

(233) + TX, 3,4-dichlorotetrahydrothiophene 1,1-dioxide (IUPAC/Chemical Abstracts name) (1065) + TX, 3-(4-chlorophenyl)-5-methylrhodanine (IUPAC name) (980) + TX, 5-methyl-6-thioxo-1,3,5-thiadiazinan-3-ylacetic acid (IUPAC name) (1286) + TX, 6-isopentenylaminopurine (alternative name) (210) + TX, abamectin (1) + TX, acetoprole [CCN] + TX, alanycarb (15) + TX, aldicarb (16) + TX, aldoxycarb (863) + TX, AZ 60541 (compound code) + TX, benclothiaz [CCN] + TX, benomyl (62) + TX, butylpyridaben (alternative name) + TX, cadusafos (109) + TX, carbofuran (118) + TX, carbon disulfide (945) + TX, carbosulfan (119) + TX, chloropicrin (141) + TX, chlorpyrifos (145) + TX, cloethocarb (999) + TX, cytokinins (alternative name) (210) + TX, dazomet (216) + TX, DBCP (1045) + TX, DCIP (218) + TX, diamidafos (1044) + TX, dichlofenthion (1051) + TX, dicliphos (alternative name) + TX, dimethoate (262) + TX, doramectin (alternative name) [CCN] + TX, emamectin (291) + TX, emamectin benzoate (291) + TX, eprinomectin (alternative name) [CCN] + TX, ethoprophos (312) + TX, ethylene dibromide (316) + TX, fenamiphos (326) + TX, fenpyrad (alternative name) + TX, fensulfothion (1158) + TX, fosthiazate (408) + TX, fosthietan (1196) + TX, furfural (alternative name) [CCN] + TX, GY-81 (development code) (423) + TX, heterophos [CCN] + TX, iodomethane (IUPAC name) (542) + TX, isamidofos (1230) + TX, isazofos (1231) + TX, ivermectin (alternative name) [CCN] + TX, kinetin (alternative name) (210) + TX, mecarphon (1258) + TX, metam (519) + TX, metampotassium (alternative name) (519) + TX, metam-sodium (519) + TX, methyl bromide (537) + TX, methyl isothiocyanate (543) + TX, milbemycin oxime (alternative name) [CCN] + TX, moxidectin (alternative name) [CCN] + TX, Myrothecium verrucaria composition (alternative name) (565) + TX, NC-184 (compound code) + TX, oxamyl (602) + TX, phorate (636) + TX, phosphamidon (639) + TX, phosphocarb [CCN] + TX, sebufos (alternative name) + TX, selamectin (alternative name) [CCN] + TX, spinosad (737) + TX, terbam (alternative name) + TX, terbufos (773) + TX, tetrachlorothiophene (IUPAC/Chemical Abstracts name) (1422) + TX, thiafenox (alternative name) + TX, thionazin (1434) + TX, triazophos (820) + TX, triazuron (alternative name) + TX, xylenols [CCN] + TX, YI-5302 (compound code) and zeatin (alternative name) (210) + TX, fluensulfone [318290-98-1] + TX,

5

10

15

20

a nitrification inhibitor selected from the group of substances consisting of potassium ethylxanthate [CCN] and nitrapyrin (580) + TX,

- a plant activator selected from the group of substances consisting of acibenzolar (6) + TX, acibenzolar-S-methyl (6)
 + TX, probenazole (658) and *Reynoutria sachalinensis* extract (alternative name) (720) + TX,
- a rodenticide selected from the group of substances consisting of 2-isovalerylindan-1,3-dione (IUPAC name) (1246)
 + TX, 4-(quinoxalin-2-ylamino)benzenesulfonamide (IUPAC name) (748) + TX, alpha-chlorohydrin [CCN] + TX, aluminium phosphide (640) + TX, antu (880) + TX, arsenous oxide (882) + TX, barium carbonate (891) + TX, bisthiosemi (912) + TX, brodifacoum (89) + TX, bromadiolone (91) + TX, bromethalin (92) + TX, calcium cyanide (444) + TX, chloralose (127) + TX, chlorophacinone (140) + TX, cholecalciferol (alternative name) (850) + TX, coumachlor (1004) + TX, coumafuryl (1005) + TX, coumatetralyl (175) + TX, crimidine (1009) + TX, difenacoum (246) + TX, difethialone (249) + TX, diphacinone (273) + TX, ergocalciferol (301) + TX, flocoumafen (357) + TX, fluoroacetamide (379) + TX, flupropadine (1183) + TX, flupropadine hydrochloride (1183) + TX, gamma-HCH (430)
- ³⁵ + TX, HCH (430) + TX, hydrogen cyanide (444) + TX, iodomethane (IUPAC name) (542) + TX, lindane (430) + TX, magnesium phosphide (IUPAC name) (640) + TX, methyl bromide (537) + TX, norbormide (1318) + TX, phosacetim (1336) + TX, phosphine (IUPAC name) (640) + TX, phosphorus [CCN] + TX, pindone (1341) + TX, potassium arsenite [CCN] + TX, pyrinuron (1371) + TX, scilliroside (1390) + TX, sodium arsenite [CCN] + TX, sodium cyanide (444) + TX, sodium fluoro-acetate (735) + TX, strychnine (745) + TX, thallium sulfate [CCN] + TX, warfarin (851) and zinc phosphide (640) + TX,
- a synergist selected from the group of substances consisting of 2-(2-butoxyethoxy)ethyl piperonylate (IUPAC name) (934) + TX, 5-(1,3-benzodioxol-5-yl)-3-hexylcyclohex-2-enone (IUPAC name) (903) + TX, farnesol with nerolidol (alternative name) (324) + TX, MB-599 (development code) (498) + TX, MGK 264 (development code) (296) + TX, piperonyl butoxide (649) + TX, piprotal (1343) + TX, propyl isomer (1358) + TX, S421 (development code) (724) +
- ⁴⁵ TX, sesamex (1393) + TX, sesasmolin (1394) and sulfoxide (1406) + TX, an animal repellent selected from the group of substances consisting of anthraquinone (32) + TX, chloralose (127) + TX, copper naphthenate [CCN] + TX, copper oxychloride (171) + TX, diazinon (227) + TX, dicyclopentadiene (chemical name) (1069) + TX, guazatine (422) + TX, guazatine acetates (422) + TX, methiocarb (530) + TX, pyridin-4-amine (IUPAC name) (23) + TX, thiram (804) + TX, trimethacarb (840) + TX, zinc naphthenate [CCN] and ziram (856) + TX,
- ⁵⁰ a virucide selected from the group of substances consisting of imanin (alternative name) [CCN] and ribavirin (alternative name) [CCN] + TX,

a wound protectant selected from the group of substances consisting of mercuric oxide (512) + TX, octhilinone (590) and thiophanate-methyl (802) + TX,

and biologically active compounds selected from the group consisting of azaconazole (60207-31-0] + TX, bitertanol [70585-36-3] + TX, bromuconazole [116255-48-2] + TX, cyproconazole [94361-06-5] + TX, difenoconazole [119446-68-3] + TX, diniconazole [83657-24-3] + TX, epoxiconazole [106325-08-0] + TX, fenbuconazole [114369-43-6] + TX, fluquinconazole [136426-54-5] + TX, flusilazole [85509-19-9] + TX, flutriafol [76674-21-0] + TX, hexaconazole [79983-71-4] + TX, imazalil [35554-44-0] + TX, imibenconazole [86598-92-7] + TX, ipconazole

[125225-28-7] + TX, metconazole [125116-23-6] + TX, myclobutanil [88671-89-0] + TX, pefurazoate [101903-30-4] + TX, penconazole [66246-88-6] + TX, prothioconazole [178928-70-6] + TX, pyrifenox [88283-41-4] + TX, prochloraz [67747-09-5] + TX, propiconazole [60207-90-1] + TX, simeconazole [149508-90-7] + TX, tebuconazole [107534-96-3] + TX, tetraconazole [112281-77-3] + TX, triadimefon [43121-43-3] + TX, triadimenol [55219-65-3] + 5 TX, triflumizole [99387-89-0] + TX, triticonazole [131983-72-7] + TX, ancymidol [12771-68-5] + TX, fenarimol [60168-88-9] + TX, nuarimol [63284-71-9] + TX, bupirimate [41483-43-6] + TX, dimethirimol [5221-53-4] + TX, ethirimol [23947-60-6] + TX, dodemorph [1593-77-7] + TX, fenpropidine [67306-00-7] + TX, fenpropimorph [67564-91-4] + TX, spiroxamine [118134-30-8] + TX, tridemorph [81412-43-3] + TX, cyprodinil [121552-61-2] + TX, mepanipyrim [110235-47-7] + TX, pyrimethanil [53112-28-0] + TX, fenpiclonil [74738-17-3] + TX, fludioxonil 10 [131341-86-1] + TX, benalaxyl [71626-11-4] + TX, furalaxyl [57646-30-7] + TX, metalaxyl [57837-19-1] + TX, Rmetalaxyl [70630-17-0] + TX, ofurace [58810-48-3] + TX, oxadixyl [77732-09-3] + TX, benomyl [17804-35-2] + TX, carbendazim [10605-21-7] + TX, debacarb [62732-91-6] + TX, fuberidazole [3878-19-1] + TX, thiabendazole [148-79-8] + TX, chlozolinate [84332-86-5] + TX, dichlozoline [24201-58-9] + TX, iprodione [36734-19-7] + TX, myclozoline [54864-61-8] + TX, procymidone [32809-16-8] + TX, vinclozoline [50471-44-8] + TX, boscalid [188425-85-6] + TX, carboxin [5234-68-4] + TX, fenfuram [24691-80-3] + TX, flutolanil [66332-96-5] + TX, mepronil 15 [55814-41-0] + TX, oxycarboxin [5259-88-1] + TX, penthiopyrad [183675-82-3] + TX, thifluzamide [130000-40-7] + TX, guazatine [108173-90-6] + TX, dodine [2439-10-3] [112-65-2] (free base) + TX, iminoctadine [13516-27-3] + TX, azoxystrobin [131860-33-8] + TX, dimoxystrobin [149961-52-4] + TX, enestroburin {Proc. BCPC, Int. Congr., Glasgow, 2003, 1, 93}+TX, fluoxastrobin [361377-29-9]+TX, kresoxim-methyl [143390-89-0] +TX, metominostrobin 20 [133408-50-1] + TX, trifloxystrobin [141517-21-7] + TX, orysastrobin [248593-16-0] + TX, picoxystrobin [117428-22-5] + TX, pyraclostrobin [175013-18-0] + TX, ferbam [14484-64-1] + TX, mancozeb [8018-01-7] + TX, maneb [12427-38-2] + TX, metiram [9006-42-2] + TX, propineb [12071-83-9] + TX, thiram [137-26-8] + TX, zineb [12122-67-7] + TX, ziram [137-30-4] + TX, captafol [2425-06-1] + TX, captan [133-06-2] + TX, dichlofluanid [1085-98-9] + TX, fluoroimide [41205-21-4] + TX, folpet [133-07-3] + TX, tolylfluanid [731-27-1] + TX, bordeaux 25 mixture [8011-63-0] + TX, copperhydroxid [20427-59-2] + TX, copperoxychlorid [1332-40-7] + TX, coppersulfat [7758-98-7] + TX, copperoxid [1317-39-1] + TX, mancopper [53988-93-5] + TX, oxine-copper [10380-28-6] + TX, dinocap [131-72-6] + TX, nitrothal-isopropyl [10552-74-6] + TX, edifenphos [17109-49-8] + TX, iprobenphos [26087-47-8] + TX, isoprothiolane [50512-35-1] + TX, phosdiphen [36519-00-3] + TX, pyrazophos [13457-18-6] + TX, tolclofos-methyl [57018-04-9] + TX, acibenzolar-S-methyl [135158-54-2] + TX, anilazine [101-05-3] + TX, ben-30 thiavalicarb [413615-35-7] + TX, blasticidin-S [2079-00-7] + TX, chinomethionat [2439-01-2] + TX, chloroneb [2675-77-6] + TX, chlorothalonil [1897-45-6] + TX, cyflufenamid [180409-60-3] + TX, cymoxanil[57966-95-7]+TX, dichlone [117-80-6] + TX, diclocymet [139920-32-4] + TX, diclomezine [62865-36-5] + TX, dicloran [99-30-9] + TX, diethofencarb [87130-20-9] + TX, dimethomorph [110488-70-5] + TX, SYP-LI90 (Flumorph) [211867-47-9] + TX, dithianon /3347-22-6] + TX, ethaboxam /162650-77-3] + TX, etridiazole /2593-15-9] + TX, famoxadone /131807-57-3] + TX, fenamidone [161326-34-7] + TX, fenoxanil [115852-48-7] + TX, fentin [668-34-8] + TX, ferimzone [89269-64-7] 35 + TX, fluazinam [79622-59-6] + TX, fluopicolide [239110-15-7] + TX, flusulfamide [106917-52-6] + TX, fenhexamid [126833-17-8] + TX, fosetyl-aluminium [39148-24-8] + TX, hymexazol [10004-44-1] + TX, iprovalicarb [140923-17-7] + TX, IKF-916 (Cyazofamid) [120116-88-3] + TX, kasugamycin [6980-18-3] + TX, methasulfocarb [66952-49-6] + TX, metrafenone [220899-03-6] + TX, pencycuron [66063-05-6] + TX, phthalide [27355-22-2] + TX, polyoxins 40 [11113-80-7] + TX, probenazole [27605-76-1] + TX, propamocarb [25606-41-1] + TX, proquinazid [189278-12-4] + TX, pyroquilon [57369-32-1] + TX, quinoxyfen [124495-18-7] + TX, quintozene [82-68-8] + TX, sulphur [7704-34-9] + TX, tiadinil [223580-51-6] + TX, triazoxide [72459-58-6] + TX, tricyclazole [41814-78-2] + TX, triforine [26644-46-2] + TX, validamycin [37248-47-8] + TX, zoxamide (RH7281) [156052-68-5] + TX, mandipropamid [374726-62-2] + TX, isopyrazam [881685-58-1] + TX, sedaxane [874967-67-6] + TX, 3-difluoromethyl-1-methyl-1H-pyrazole-4-car-45 boxylic acid (9-dichloromethylene-1,2,3,4-tetrahydro-1,4-methano-naphthalen-5-yl)-amide (dislosed in WO 2007/048556) + TX, 3-difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic acid (3',4',5'-trifluoro-biphenyl-2-yl)-amide (dislosed in WO 2006/087343) + TX, 1-[4-[4-[(5S)5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2yl]piperidin-1-yl]-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone + TX and 1-[4-[4-[5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl]piperidin-1-yl]-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]eth-50 anone ([CAS-RNr.: 1003318-67-9], both disclosed in WO 2010/123791, WO 2008/013925, WO 2008/013622 and WO 2011/051243 page 20) +TX.

[0092] The references in brackets behind the active ingredients, e.g. [3878-19-1] refer to the Chemical Abstracts Registry number. The above described mixing partners are known. Where the active ingredients are included in "The Pesticide Manual" [The Pesticide Manual - A World Compendium; Thirteenth Edition; Editor: C. D. S. TomLin; The British Crop Protection Council], they are described therein under the entry number given in round brackets hereinabove for the particular compound; for example, the compound "abamectin" is described under entry number (1). Where "[CCN]" is added hereinabove to the particular compound, the compound in question is included in the "Compendium of Pesticide".

Common Names", which is accessible on the internet [A. Wood; <u>Compendium of Pesticide Common Names</u>, Copyright © 1995-2004]; for example, the compound "acetoprole" is described under the internet address <u>http://www.alanwood.net/</u> <u>pesticides/acetoprole.html.</u>

[0093] Most of the active ingredients described above are referred to hereinabove by a so-called "common name",

- ⁵ the relevant "ISO common name" or another "common name" being used in individual cases. If the designation is not a "common name", the nature of the designation used instead is given in round brackets for the particular compound; in that case, the IUPAC name, the IUPAC/Chemical Abstracts name, a "chemical name", a "traditional name", a "compound name" or a "develoment code" is used or, if neither one of those designations nor a "common name" is used, an "alternative name" is employed. "CAS Reg. No" means the Chemical Abstracts Registry Number.
- 10 [0094] The active ingredient mixture of the compounds of formula I selected from table P with active ingredients described above comprises a compound selected from table P and an active ingredient as described above preferably in a mixing ratio of from 100:1 to 1:6000, especially from 50:1 to 1:50, more especially in a ratio of from 20:1 to 1:20, even more especially from 10:1 1 to 1:10, very especially from 5:1 and 1:5, special preference being given to a ratio of from 2:1 to 1:2, and a ratio of from 4:1 to 2:1 being likewise preferred, above all in a ratio of 1:1, or 5:1, or 5:2, or 5:3,
- or 5:4, or 4:1, or 4:2, or 4:3, or 3:1, or 3:2, or 2:1, or 1:5, or 2:5, or 3:5, or 4:5, or 1:4, or 2:4, or 3:4, or 1:3, or 2:3, or 1:
 2, or 1:600, or 1:300, or 1:150, or 1:35, or 2:35, or 4:35, or 1:75, or 2:75, or 4:75, or 1:6000, or 1:3000, or 1:1500, or 1:
 350, or 2:350, or 4:350, or 1:750, or 2:750, or 4:750. Those mixing ratios are understood to include, on the one hand, ratios by weight and also, on other hand, molar ratios.
- [0095] The mixtures as described above can be used in a method for controlling pests, which comprises applying a composition comprising a mixture as described above to the pests or their environment, with the exception of a method for treatment of the human or animal body by surgery or therapy and diagnostic methods practised on the human or animal body.

[0096] The mixtures comprising a compound of formula I selected from table P and one or more active ingredients as described above can be applied, for example, in a single "ready-mix" form, in a combined spray mixture composed from

- ²⁵ separate formulations of the single active ingredient components, such as a "tank-mix", and in a combined use of the single active ingredients when applied in a sequential manner, i.e. one after the other with a reasonably short period, such as a few hours or days. The order of applying the compounds of formula I selected from table P and the active ingredients as described above is not essential for working the present invention.
- [0097] The compositions can also comprise further solid or liquid auxiliaries, such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides, plant activators, molluscicides or herbicides.
- [0098] The compositions according to the invention are prepared in a manner known per se, in the absence of auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries). These processes for the preparation of the compositions and the use of the compounds I for the preparation of these compositions are also a subject of the invention.
- [0099] The application methods for the compositions, that is the methods of controlling pests of the abovementioned type, such as spraying, atomizing, dusting, brushing on, dressing, scattering or pouring which are to be selected to suit the intended aims of the prevailing circumstances and the use of the compositions for controlling pests of the abovementioned type are other subjects of the invention. Typical rates of concentration are between 0.1 and 1000 ppm, preferably between 0.1 and 500 ppm, of active ingredient. The rate of application per hectare is generally 1 to 2000 g of active ingredient per hectare, in particular 10 to 1000 g/ha, preferably 10 to 600 g/ha.
- ⁴⁵ [0100] A preferred method of application in the field of crop protection is application to the foliage of the plants (foliar application), it being possible to select frequency and rate of application to match the danger of infestation with the pest in question. Alternatively, the active ingredient can reach the plants via the root system (systemic action), by drenching the locus of the plants with a liquid composition or by incorporating the active ingredient in solid form into the locus of the plants, for example into the soil, for example in the form of granules (soil application). In the case of paddy rice crops, such granules can be metered into the flooded paddy-field.
- [0101] The compositions according to the invention are also suitable for the protection of plant propagation material, for example seeds, such as fruit, tubers or kernels, or nursery plants, against pests of the abovementioned type. The propagation material can be treated with the compositions prior to planting, for example seed can be treated prior to sowing. Alternatively, the compositions can be applied to seed kernels (coating), either by soaking the kernels in a liquid
- ⁵⁵ composition or by applying a layer of a solid composition. It is also possible to apply the compositions when the propagation material is planted to the site of application, for example into the seed furrow during drilling. These treatment methods for plant propagation material and the plant propagation material thus treated are further subjects of the invention. [0102] Biological Examples (% = per cent by weight, unless otherwise specified)

Example B1: Activity against Spodoptera littoralis (Egyptian cotton leafworm): (larvicide, feeding/residual contact activity, preventive)

[0103] Cotton leaf discs were placed on agar in a 24-well microtiter plate and sprayed with test solutions. After drying, the leaf discs were infested with 5 L₁ larvae. The samples were checked for mortality, repellent effect, feeding behaviour, and growth regulation 3 days after treatment.

[0104] In this test, compound 1.008 showed an activity of over 80% at a concentration of 400 ppm.

Example B2: Plutella xylostella (diamond back moth): (larvicide, feeding/residual contact activity, preventive)

10

[0105] 24-well microtiter plate (MTP) with artificial diet was treated with test solutions by pipetting. After drying, the MTP's were infested with larvae (L2)(10-15 per well). After an incubation period of 5 days, samples were checked for larval mortality, antifeedant and growth regulation.

In this test, compound 1.012 showed an activity of over 80% at a concentration of 400 ppm.

15

Example B3: Activity against *Myzus persicae* (green peach aphid): (mixed population, feeding/residual contact activity, preventive)

[0106] Sunflower leaf discs were placed on agar in a 24-well microtiter plate and sprayed with test solutions. After drying, the leaf discs were infested with an aphid population of mixed ages. After an incubation period of 6 days, samples were checked for mortality. In this test, compounds 1.008, 1.009, 1.010, 1.013 and 1.041 showed an activity of over 80% at a concentration of 400 ppm.

Example B4: Activity against *Tetranychus urticae* (two-spotted spider mite): (mixed population, feeding/contact activity, preventive)

[0107] Bean leaf discs on agar in 24-well microtiter plates were sprayed with test solutions. After drying, the leaf discs were infested with mite populations of mixed ages. 8 days later, discs were checked for egg mortality, larval mortality, and adult mortality. In this test, compounds 1.008 and 1.011 showed an activity of over 80% at a concentration of 400 ppm.

30

25

Example B5: Activity against Bemisia tabaci (cotton white fly): (feeding/residual contact activity, preventive)

[0108] Cotton leaf discs were placed on agar in a 24-well microtiter plate and sprayed with test solutions. After drying, the leaf discs were infested with 12 to 18 adults. After an incubation period of 6 days after infestation, samples were checked for mortality and special effects (e.g. phytotoxicity). In this test, compound 1.041 showed an activity of over 80% at a concentration of 400 ppm.

Claims

1. A compound of formula I

wherein

45

40

50

55

X is nitrogen or C-R1;

Y is nitrogen or C-R₄;

R₁ is hydrogen, C₁-C₆alkyl or halogen;

 R_2 is C_1 - C_6 alkyl which can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, nitro, cyano, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsu

R₃ is a five- to ten-membered monocyclic or fused bicyclic ring system which can be aromatic, partially saturated or fully saturated and can contain 1 to 4 hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, it not being possible for each ring system to contain more than 2 oxygen atoms and more than 2 sulfur atoms, and it being possible for the five- to ten-membered ring system itself to be mono- to polysubstituted 5 by substituents independently selected from the group consisting of halogen, cyano, nitro, amino, hydroxy, C1-C6alkyl, C2-C6alkenyl, C2-C6alkynyl, C2-C6alkynyloxy, C3-C6cycloalkyl, C5-C7cycloalkenyl, C5-C8cy $cloalkynyl, C_3-C_6 cycloalkylamino, C_1-C_6 haloalkyl, C_2-C_6 haloalkenyl, C_2-C_6 haloalkynyl, C_3-C_6 halocycloalkyl, C_$ C2-C7halocycloalkenyl, C2-C8halocycloalkynyl, C1-C6alkoxy-C1-C6alkylamino, C1-C6alkoxy, C1-C6haloalkoxy, C_1-C_6 alkylthio, C_1-C_6 haloalkylthio, C_1-C_6 alkylsulfinyl, C_1-C_6 alkylsulfonyl, C_1-C_6 alkylamino, di-(C_1-C_6 alkyl)ami-10 no, C3-C6cycloalkylamino, C1-C6alkyl-C3-C6cycloalkylamino, C1-C6alkylcarbonyl, C1-C6alkoxycarbonyl, C1- C_6 alkylaminocarbonyl, C_1 - C_6 dialkylaminocarbonyl, C_1 - C_6 alkoxycarbonyloxy, C_1 - C_6 alkylaminocarbonyloxy, C_1 -C₆dialkylaminocarbonyloxy, tri-(C₁-C₆alkyl)silyl or phenyl, it being possible for the phenyl group in turn to be mono- to polysubstituted by substituents independently selected from the group consisting of hydroxy, $C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_1-C_6 alkoxy, C_1-C_6 alkylthio, C_1-C_6 haloalkylthio, C_2-C_6 alkenylthio, C_2-C_6 haloalke-C_2-C_6 haloalke-C_2-C_6 haloalkylthio, C_2-C_6 hal$ 15 nylthio, C₂-C₆alkynylthio, C₁-C₃alkoxy-C₁-C₃alkylthio, C₁-C₄alkylcarbonyl-C₁-C₃alkylthio, C₁-C₄alkoxycarbo $nyl-C_1-C_3alkylthio, cyano-C_1-C_3alkylthio, C_1-C_6alkylsulfinyl, C_1-C_6haloalkylsulfinyl, C_1-C_6alkylsulfonyl, C_1-C_6alkylsu$ C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, N,N-di-(C_1 - C_2 alkyl) aminosulfonyl, di(C_1 - C_4 alkyl) amino, halogen, cyano and nitro; and the substituents at the nitrogen atoms in the ring systems being other than halogen; and

²⁰ R₄ is hydrogen or halogen;

and agrochemically acceptable salts/enantiomers/tautomers/N-oxides of those compounds.

- 2. A compound of formula I according to claim 1, wherein
- said ring system R_3 is aromatic.
 - 3. A compound of formula I according to claim 2, wherein

 R_3 is mono- to polysubstituted by substituents selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoy, C_2 - C_6 alkoy, C_3 - C_6 cycloalkyl, halogen, cyano, nitro, amino, di-(C_1 - C_6 alkyl)amino, C_3 - C_6 cycloalkylamino and phenyl, it being possible for the phenyl group in turn to be mono- to polysubstituted by substituents independently selected from the group consisting of halogen and C_1 - C_6 alkoy.

- 4. A compound of formula I according to claim 2, wherein
- the ring system R₃ is a six-membered aromatic ring system containing 2 nitrogen atoms.
 - A compound of formula I according to claim 2, wherein said ring system R₃ is selected from the group consisting of [1,2,4]triazolo[4,3-b]pyridazinyl, pyridyl, pyrimidinyl and quinazolinyl.
- 40 **6.** A compound of formula I according to claim 2, wherein the ring system R_3 is 2-pyrimidyl.
 - A compound of formula I according to claim 1, wherein R₂ is C₁-C₆alkyl which can be mono- to disubstituted by substituents independently selected from the group consisting of halogen, nitro, cyano, C₁-C₆alkoxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl and C₁-C₆alkylsulfonyl.
 - 8. A compound of formula I according to claim 1, wherein R_1 is C_1 - C_6 alkyl or halogen; and R_2 is C_1 - C_6 alkyl.
- 50

45

30

35

- A compound of formula I according to claim 1, wherein R₁ is methyl or chloro; and R₂ is methyl.
- ⁵⁵ **10.** A compound of formula I according to claim 1, wherein R_4 is hydrogen or fluorine.

11. A pesticidal composition, which comprises at least one compound of formula I according to claim 1 or, where

appropriate, a tautomer thereof, in each case in free form or in agrochemically utilizable salt form, as active ingredient and at least one auxiliary.

- **12.** A composition according to claim 11 for controlling insects or representatives of the order Acarina.
- **13.** A method for controlling pests, which comprises applying a composition according to claim 11 to the pests or their environment with the exception of a method for treatment of the human or animal body by surgery or therapy and diagnostic methods practised on the human or animal body.
- ¹⁰ **14.** A method for the protection of plant propagation material from the attack by pests, which comprises treating the propagation material or the site, where the propagation material is planted, with a composition according to claim 11.
 - 15. Plant propagation material treated in accordance with the method described in claim 14.

EUROPEAN SEARCH REPORT

Application Number EP 11 17 1950

	DOCUMENTS CONSID					
Category	Citation of document with i of relevant pass	ndication, where appropriate, ages	R∈ to	elevant claim	CLASSIFICATION OF THE APPLICATION (IPC)	
A,D	WO 2009/149858 A1 [DE]; BRETSCHNEIDEF EVA-MARI) 17 Decemt * the whole documer	(BAYER CROPSCIENCE AG THOMAS [DE]; FRANKEN per 2009 (2009-12-17) it * 	1-1	.5	INV. C07D417/04	
					TECHNICAL FIELDS SEARCHED (IPC)	
	The present search report has					
Place of search		Date of completion of the search	Date of completion of the search		Examiner	
	пе науие	i September 20.		нас	king, michiel	
CATEGORY OF CITED DOCUMENTS T : theory or principle underlying the invention X : particularly relevant if taken alone E : earlier patent document, but published on, or Y : particularly relevant if combined with another D : document of the same category A : technological background E : earlier patent document of the same category O : non-written disclosure & : member of the same patent family, corresponding document P : intermediate document document				vention hed on, or corresponding		

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 11 17 1950

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

01-09-2011

	Patent document cited in search report		Publication date		Patent family member(s)		Publication date
	WO 2009149858	A1	17-12-2009	AR CN EP KR US	072786 / 102056916 / 2297130 / 20110016955 / 2011098287 /	A1 A A1 A A1	22-09-2010 11-05-2011 23-03-2011 18-02-2011 28-04-2011
FORM P0459							

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4080457 A [0002]
- WO 2009149858 A [0002] [0066]
- WO 2010129497 A [0002]
- WO 2010006713 A [0002] [0062]
- WO 09149858 A [0033]
- WO 10006713 A [0033]
- WO 0015615 A [0046]
- WO 0215701 A [0049]
- WO 021070177[0049]
 WO 03018810 A [0049]
- EP 0374753 A [0049]
- WO 9307278 A [0049]
- WO 9307278 A [0049]
 WO 9534656 A [0049]
- WO 9534656 A [0049]
- EP 0427529 A [0049]
- EP 451878 A [0049]

Non-patent literature cited in the description

• J. P. WOLFE ; J. S. NAKHLA. The Suzuki Reaction in Name Reactions for Homologations. John Wiley & Sons, Inc, 2009, 163 [0029]

- WO 03052073 A [0049]
- EP 0367474 A [0049]
- EP 0401979 A [0049]
- WO 9013651 A [0049]
- EP 0392225 A [0049] [0050]
- WO 9533818 A [0049] [0050]
- EP 0353191 A [0049]
- WO 03000906 A [0050]
- WO 2007048556 A [0091]
- WO 2007040000 A [0091]
 WO 2006087343 A [0091]
- WO 2000007343 A [0091]
 WO 2010123791 A [0091]
- WO 2008013925 A [0091]
- WO 2008013923 A [0091]
 WO 2008013622 A [0091]
- WO 2011051243 A [0091]
- Bioorganic & Medicinal Chemistry Letters, 2007, vol. 17 (4), 1056-1061 [0031]
- J. Med. Chem., 1989, vol. 32 (12), 2561-73 [0046]
- Proc. BCPC, Int. Congr., 2003, vol. 1, 93 [0091]