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Huanglongbing (HLB) or citrus greening disease is one of the most important diseases affecting citrus
orchards in Florida and other parts of the world. The first critical step for a successful control of HLB is
its detection and diagnosis. Spectroscopy has proven to yield reliable results for its early detection, min-
imizing the time consumed for this process. This study presents a new approach of high-resolution aerial
imaging for HLB detection using a low-cost, low-altitude remote sensing multi-rotor unmanned aerial
vehicle (UAV). A multi-band imaging sensor was attached to a UAV that is capable of acquiring aerial
images at desired resolution by adjusting the flying altitude. Moreover, the results achieved using
UAV-based sensors were compared with a similar imaging system (aircraft-based sensors) with lower
spatial resolution. Data comprised of six spectral bands (from 530 to 900 nm) and seven vegetation indi-
ces derived from the selected bands. Stepwise regression analysis was used to extract relevant features
from UAV-based and aircraft-based spectral images. At both spatial resolutions, 710 nm reflectance
and NIR-R index values were found to be significantly different between healthy and HLB-infected trees.
During classification studies, accuracies in the range of 67–85% and false negatives from 7% to 32% were
acquired from UAV-based data; while corresponding values were 61–74% and 28–45% with aircraft-
based data. Among the tested classification algorithms, support vector machine (SVM) with kernel
resulted in better performance than other methods such as SVM (linear), linear discriminant analysis
and quadratic discriminant analysis. Thus, high-resolution aerial sensing has good prospect for the detec-
tion of HLB-infected trees.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

According to the latest commercial citrus inventory, citrus orch-
ards in the state of Florida represent 219,000 ha (USDA, 2011a)
with about $1.145 billion on-tree value (USDA, 2011b), becoming
the world’s second largest orange juice production area (Spreen
et al., 2006). Despite these outcomes, the change in net orchard
production area has been negative since 1996, with around
55,250 ha being abandoned in 2011 in Florida (USDA, 2011a).
One reason for this decline is the appearance of diseases that have
appeared in the last decade. One such disease is citrus greening,
also known as Huanglongbing (HLB), which affects citrus produc-
tion worldwide. HLB is caused by a bacterium and was first found
in Florida in August of 2005, although the insect vector of this dis-
ease, psyllid (Diaphorina citri) was found back in 1998 (Halbert and
Manjunath, 2004; Gottwald, 2010). The main symptoms that can
be seen in infected trees are yellowing (chlorosis) of the leaf veins,
the entire leaf or the whole branch. In case of severe infections, the
disease eventually leads to the death of the tree. Fruits from HLB-
infected trees grow deformed, bitter and with acidic flavor which
make them unsuitable for commercial use (Chung and Brlansky,
2009). No definitive cure for this specific disease is yet known
and the experts highly recommend the need for controlling the
psyllid vector as a first preventive measure. In Africa, it is recom-
mended to completely remove young infected trees, while the in-
fected branches are removed if the trees are older than 6 years
(Buitendag and von Broembsen, 1993).

The most accurate diagnosis involves polymerase chain reaction
(PCR) analysis (Hansen et al., 2008) but the identification of in-
fected trees and sampling of leaves is time consuming. Moreover,
the average accuracy achieved in visually inspecting and identify-
ing infected trees by scouts is reported to be between 47% and 59%
(Futch et al., 2009). The costs of citrus greening management have
raised the total citrus production costs from about 1923.15 $/ha to
4331.35 $/ha in southwest Florida from 2002–2003 to 2007–2008
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(Muraro and Morris, 2009). Due to the severity of HLB, there is a
demand for a rapid survey system to detect potentially HLB-in-
fected trees so that the workers can focus on specified areas for
monitoring, inspecting and controlling further spread of the
disease.

Specific regions in the electromagnetic spectra have been found
to provide information about the physiological stress in plants, and
consequently, diseased plants usually exhibit different spectral sig-
nature than non-stressed healthy plants in those specific ranges
(West et al., 2003; Sankaran et al., 2010). Spectroscopy in the range
of visible and near infrared has been investigated for disease detec-
tion in a great variety of crops since it is a rapid and non-destruc-
tive tool that can be used in real time crop assessment under field
conditions (Sankaran et al., 2010). For instance, Naidu et al. (2009)
identified viral infection (leafroll) in grapevines (Vitis vinifera L.)
under field conditions using leaf spectral response from field por-
table spectrometer equipped with a leaf-probe. Hyperspectral
reflectance in the range of 350–2500 nm was used by Delalieux
et al. (2007) to detect apple scab (Venturia inaequalis). The study
concluded that the features along two spectral ranges in near infra-
red (1350–1750 nm and 2200–2500 nm) showed higher perfor-
mance in the classification of infected and healthy leaves at early
stages. At the same time, the spectral regions in the range 580–
660 nm and 688–715 nm exhibited better classification power for
developed stages of infection.

Studies on citrus diseases indicate applicability of visible-near
infrared spectroscopy in remote sensing. Balasundaram et al.
(2009) recommended spectral regions between 500 nm and
800 nm for successful detection of canker in citrus peel. On the
other hand, HLB was detected in citrus leaves with 84–87% overall
classification accuracy and an average diseased class classification
accuracy of about 75–84% (Sankaran and Ehsani, 2011). In this
study, quadratic discriminant analysis (QDA) and several selected
bands in visible (537 nm, 662 nm, 713 nm) and near infrared
(813 nm, 1120 nm, 1472 nm) performed better by themselves than
introducing vegetation indices as classification features. Similar
conclusion was achieved by Sankaran et al. (2011), using uncorre-
lated principal components computed from entire visible-near
infrared spectra (350–2500 nm) as classification features. QDA dis-
tinguished between healthy and symptomatic HLB-infected leaves
with accuracies greater than 90%, and 88% accuracy was found
when asymptomatic leaves were included in the classification.
Similarly, Mishra et al. (2011) found that low-cost optical sensor
with customized spectral bands (570 nm, 670 nm, 870 nm,
970 nm) can also be used for reliable classification.

As visible and near infrared spectroscopy provides an accurate
tool for plant status monitoring, it has been implemented in a wide
variety of decision support systems in agriculture both in ground
and aerial remote sensing. Potential applications of aerial remote
sensing platforms have opened in the last few years with the avail-
ability of smaller autonomous aerial platforms capable of flying at
low altitudes and diverse set of miniaturized sensors (Berni et al.,
2008; Zarco-Tejada et al., 2012). Therefore, combination of Un-
manned Aerial Vehicles (UAVs) with multispectral and hyperspec-
tral cameras are becoming prevalent for weed detection and
mapping for site specific herbicide application (Kazmi et al.,
2011; Fernandez-Quintanilla et al., 2011), water stress detection
and decision support (Sepulcre-Cantó et al., 2006; Berni et al.,
2009a,b; Zarco-Tejada et al., 2012) and yield estimation (Swain
et al., 2010) among others. In addition, disease detection with aer-
ial remote sensing hyperspectral imagery is also being investi-
gated. Zhang et al. (2005) successfully detected late blight
disease in tomato fields using multispectral images at 1 m spatial
resolution when the infection stage reached at least third level.
Although moderate accuracies (Kumar et al., 2012) can be achieved
using aerial images acquired from aircrafts, there is a need for high
resolution images to further improve the identification of diseased
trees. This is especially important for HLB, where symptoms may
be observed only in a part of a tree (which can be at the top of
the canopy), while remaining tree canopy appears healthy.

In this study, we examine the applicability of high-resolution
multi-band imaging for HLB detection in citrus, while implement-
ing a low-cost, remote sensing platform. The sensor was incorpo-
rated on an UAV that is capable of acquiring aerial images at
desired resolution by adjusting the flying altitude. Our specific
objectives were to: (1) to study the effect of image resolution (at
two levels) on the classification performance while identifying
HLB-infected trees, and (2) to identify prominent spectral features
that contribute towards the healthy and HLB-infected tree classifi-
cation. For the classification studies, Linear Discriminant Analysis
(LDA), QDA and Support Vector Machine (SVM) were selected.
The UAV images were compared with airborne multispectral
images acquired from a hyperspectral camera mounted on the
aircraft.
2. Materials and methods

2.1. Airborne hyperspectral images

On 14 December, 2011, airborne hyperspectral images (HYS)
were acquired by Galileo Group Inc. (Melbourne, FL, USA) from a
citrus orchard managed by the Citrus Research and Education Cen-
ter (CREC), University of Florida, in Lake Alfred, FL using a single-
engine fixed-wing aircraft. Two flight lines were carried on from
12:00 to 13:00 PM (local time), covering an area of approximately
17 ha, with coordinate center 28�07048.3000N, 81�43001.7000W. The
flying altitude was 640 m above the sea level (around 590 m above
ground level) at a speed of 65 knots. The images were taken under
clear sky conditions with few scattered clouds at about 1500 m,
mean solar azimuth of 182� and elevation of 38�. The camera used
for this operation was an AISA EAGLE VNIR Hyperspectral Imaging
Sensor (Specim Ltd., Oulu, Finland), with 397–998 nm spectral
range and 128 spectral bands for the VNIR region, with spectral
resolution of around 5 nm. The whole mosaic was represented by
785 � 871 pixels with a ground sampling distance (GSD) of 0.5 m
and field of view (FOV) of 34�. Image data was radiometrically,
atmospherically and geometrically corrected and passed a quality
test by Galileo Group Inc. before being delivered. The data was
atmospherically corrected using trap reference spectra. The projec-
tion used for georectification was UTM zone 17 North, WGS-84,
meter. Each pixel in the image data set was delivered in reflectance
� 10,000 and only the bands required for this study were con-
verted to 8-bit format (0–255 radiometric range) with ENVI soft-
ware (version 4.7, ITT VSI, White Plains, NY, USA) and stored as
georeferenced raster imagery files (geoTIFF).
2.2. UAV and multiband sensors

An unmanned aerial vehicle (HiSystems GmbH, Moormerland,
Germany) was used in this study (Fig. 1). It weighs about 2000 g
without the camera and is powered by a 6600 mA h Lithium Ion
Polymer battery which has a flight time of about 10–20 min
depending on the payload. It uses six brushless motors where each
motor can handle 20 A power with a maximum thrust of 2200 g.
Beachwood propellers (Xoar International, CA, USA) for each motor
were used to minimize the vibration in the UAV. An array of on-
board sensors for flight stability and waypoint navigation includes
gyroscope, accelerometer, compass, GPS, and pressure sensor. The
UAV has the capability of holding its current position with up to
50 km/h wind condition. It can go up to 1 km vertically, but due
to the nature of our data collection and with the Federal Aviation



Fig. 1. UAV with multiband sensor used for data acquisition from citrus orchard.

108 F. Garcia-Ruiz et al. / Computers and Electronics in Agriculture 91 (2013) 106–115
Administration (FAA) regulations, an altitude of 100 m was used.
The radio transmitter (Graupner, Stuttgart, Germany) has a range
of up to 4 km. Telemetric information can either be viewed on a
laptop through a wireless module or directly using a radio control
transmitter. Waypoints navigation can be uploaded through the
laptop and can be updated while the UAV is in flight. The UAV is
capable of navigation with up to a maximum of 30 waypoints using
the current firmware. A small control board was added to control
the trigger of the sensor attached to the UAV. This control trans-
lates the stick movements of the radio transmitter to trigger the
multispectral camera.

A six narrow-band multispectral camera (miniMCA6, Tetracam,
Inc., CA, USA) was attached to the UAV (Fig. 1). The camera weighs
700 g and consists of six digital image sensors arranged in a 3 � 2
array with independent optics and user customizable 10 nm band
pass filters (Andover Corporation, NH, USA). Each of these units
holds a 1.3 megapixel CMOS sensor, with image resolution of
1280 � 1024 pixels, 8.5 mm focal length and FOV of
43.7� � 35.6�. The multispectral camera was configured with two
different narrow-band filter arrays. The first array was configured
with filters centered at 530, 610, 690, 740, 850 and 900 nm, and
the second array used filters centered at 440, 480, 560, 660, 710
and 810 nm (10 nm bandwidth). The bands were selected based
on our previous work (Sankaran et al., 2011) and preliminary
studies.

2.3. Data collection

A 0.35 ha plot was selected as a region of interest (ROI) from cit-
rus orchard for this study (Fig. 2a). The orchard consisted of pro-
ductive orange trees of Valencia cultivar (Swingle rootstock),
grown with a row spacing of 4.6 m � 6.1 m. The plot selected as
ROI for carrying on the experiments was ground scouted (visual
inspection) in order to identify the trees with few symptomatic
leaves to be included in the study. Two categories of trees were se-
lected: healthy and HLB-infected trees. The GPS position of each
identified tree was recorded with an RTK-GPS (HiPerXT GPS Sys-
tem, Topcon, Livemore, CA, USA), and a shapefile indicating the
location of the healthy and HLB-infected trees was generated using
ArcView GIS software (ESRI, Redlands, CA, USA). A total of 38 trees
were selected, 19 healthy and 19 HLB-infected trees (Fig. 2b). Pres-
ence of HLB was confirmed through polymerase chain reaction
(PCR) test in laboratory as many infected trees did not exhibit vis-
ible symptoms in their leaves.

On 14 February and 8 March, 2012, the UAV equipped with a
multispectral camera was sent to a pre-defined waypoint
(28.12861�, �81.71566�) within the ROI area and altitude of
100 m above the ground level for image acquisition. Once the
UAV reached in assigned position and was sufficiently stable, im-
age trigger was activated manually several times from the remote
control, and about five images were captured during each flight. As
the payload supported by the UAV limited the use of one camera at
a time, on 14 February first camera array was used; while on 8
March second camera array was used. The camera attached di-
rectly to the UAV frame (without supplementary gimbal) and
was triggered through an RS232 connection. The images were
stored in 8-bit RAW format in individual compact flash cards and
converted afterwards to non-compressed 8-bit TIFF format using
Tetracam’s software PixelWrench2 (version 1.0.6.1, Tetracam,
Inc., CA, USA). Due to the low altitude at which the images were ta-
ken, solar radiation reflected by the Earth’s surface to image sen-
sors is expected to have minimal interaction with the
atmosphere. For this reason, high-resolution images were not
atmospherically corrected.
2.4. Ground control points and georeferencing

Eight, white 60 cm � 60 cm boards, with a black cross in the
center were used as ground control points (GCPs). They were dis-
tributed over the field, close to the corners of the area to be im-
aged, and their coordinates were recorded with RTK-GPS
equipment. As the six-band camera yields a grayscale image per
sensor per band, each of these images was georeferenced sepa-
rately using the GCP coordinates. ENVI software (Exelis Visual
Information Solutions, Inc., Boulder, CO, USA) was used for image
registration and the images were stored as geoTIFF files. In order
to match the hyperspectral image coordinates, same projection
and datum was used for high-resolution images (UTM zone 17
North and WGS-84). Nearest neighborhood was selected as a
resampling method.
2.5. Spectral bands and vegetation indices

Matlab (R2011a, MathWorks, MA, USA) was used for image pro-
cessing and statistical analysis. The trees within the region of inter-
est were manually segmented for both aircraft and UAV-based
high-resolution georeferenced images, and a mask was generated
based on the normalized difference vegetation index (NDVI) index.
The trees in the image were segmented using 0.2 threshold value
for NDVI such that the pixels covering the tree canopy were in-
cluded in the analysis, while pixels covering the soil (non-vegetation
region) were excluded. After masking, two libraries were created,
one for aircraft-based and other for UAV-based images, such that
there were 12 false color images (for each band) for each tree.
We selected six bands out of these false color images based on
our previous work and also, the need for certain bands to compute
vegetation indices. Our previous work involved spectral evaluation
of the 12 bands based on their separability test to detect HLB
(Sankaran et al., in preparation) during ground-based remote sens-
ing studies.

The six bands selected were 530, 560, 660, 690, 710 and
900 nm. From 128 spectral bands in the airborne hyperspectral
images, bands as close to these six bands were selected. Thus,
the bands from airborne images were 532, 560, 660, 688, 712
and 900 nm. Here on, a ‘‘b’’ preceding the wavelength value of
the hyperspectral images will refer to the grayscale image captured
using such filter (e.g. b900). Similarly, images from bands 532, 688
and 712 extracted aircraft-based hyperspectral data will be labeled
as b530, b690 and b710 to match the labels used in the UAV-based
multispectral camera.



Fig. 2. (a) False color image of the study area with marked region of interest (ROI); (b) Aerial images with marked Healthy (H) and HLB-infected trees (D) within the ROI as
acquired from aircraft (left) and UAV (right).
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In addition to the six spectral bands, seven vegetation indices
(VIs) were calculated. These indices represent plant health and
photosynthetic activity. The indices studied were: NDVI, green
normalized difference vegetation index (GNDVI), soil-adjusted
vegetation index (SAVI), near infrared (NIR) – red(R), R/NIR, green
(G)/R and NIR/R (Sankaran et al., 2010). Grayscale images repre-
senting reflectance at three spectral bands in infrared (900 nm),
red (690 nm) and green (530 nm) were used for computing the
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vegetation indices. Thus, the total number of spectral features was
13 per sample, which include six spectral bands and seven
vegetation indices.
Fig. 3. False color segmented images from a healthy (a) and HLB-infected (b) tree.
The images a1 and b1 represent aircraft-based images; while, images a2 and b2
represent UAV-based images. False color images were generated using R = 900 nm,
G = 690 nm and B = 560 nm. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
2.6. Feature extraction and classification

Stepwise regression analysis (Matlab) was used as a feature
extraction tool in order to further reduce the number of features
in aircraft- and UAV-based datasets. The function ‘‘stepwisefit’’ used
begins by fitting a model without features/variables and including
features one by one by comparing the p-value of the F-statistic
with the entrance/exit tolerances (i.e. 0.10 and 0.15, respectively)
until further improvement is sort. After feature extraction process,
classification studies were conducted to assess their impact on the
accuracies.

Linear and quadratic discriminant analysis as well as support
vector machine (with linear and non-linear/kernel fitting), were
chosen as classification algorithms. Each dataset (aircraft and
UAV-based, with and without feature extraction) was divided into
balanced (i.e. equal number of healthy and HLB-infected trees) cal-
ibration and validation datasets. The calibration datasets were allo-
cated 66% of the samples and 33% for validation for testing the
calibration model. Thus, 26 trees were used for calibration and
12 for validation. Raw digital values and vegetation indices were
directly used as input features without any further conversion.
LDA builds a linear boundary between the two groups from the cal-
ibration dataset and uses this boundary for classifying unknown
samples in the validation dataset. Unlike LDA, in QDA, the covari-
ance matrix is not assumed to be equal from class to class and a
quadratic model is developed for classification. Support vector ma-
chine finds a hyperplane that generates biggest margin between
the two classes. The support vectors are defined as the data points
closest to the hyperplane. When kernel is applied to SVM, the sep-
aration hyperplane is no longer linear and can adopt several poly-
nomial forms. The kernel space selected was Gaussian Radial Basis
Function (rbf). The scaling factor associated to the rbf kernel mea-
sures the area of influence that the support vector has over the data
space. This value was varied from a range of 0.5–2 in order to test
its performance. Accuracy of classification as well as false nega-
tives (i.e. infected trees classified as healthy) was computed from
each classification algorithm. The final value was an average of
10 iterations, creating a new random training and testing dataset
with a different seed for each iteration.
3. Results and discussion

3.1. Resolution of image data

The spatial resolution of aerial images from UAV and aircraft
were compared. The multispectral data from aircraft were acquired
from 590 m altitude above the ground level, which covered an area
of 390 � 390 m. On the other hand, UAV-based images covered
76 � 61 m in the ground. The spatial resolution in the aircraft-
based spectral images was about 0.5 m/pixel, whereas the high-
resolution images extracted from the multispectral camera yielded
a pixel size of about 5.45 cm/pixel (Fig. 3).

There existed a small translation between images acquired from
different lenses of the multispectral camera in UAV. In other words,
six images representing six spectral bands did not align perfectly
though it was anticipated that the images would align correctly
(with negligible misalignment) at an altitude of 100 m. This could
be attributed to any of these factors, e.g., lenses placement which
has an offset to each other, the time it takes for each sensor to cap-
ture and the wind condition when the UAV was hovering at that
particular waypoint. The misalignment had an average offset of
eight pixels between bands. This was corrected after georeferenc-
ing each of the images by manually matching the features (control
points) from one band to another and performing a projective spa-
tial transformation. However, the multispectral images from air-
craft did not display any of the above explained problems as the
hyperspectral camera used is based on a single lens. The UAV-
based images were radiometrically calibrated to confirm that the
white board used as ground control points represented 100%
reflectance with a digital number (DN) of 255.

The NDVI threshold of 0.2 used for tree segmentation was found
to be optimal and canopy was successfully differentiated from soil
and shadows in both healthy and infected trees (Fig. 3) without
leaving excessive unwanted non-canopy pixels in the final image.
This guarantees low quantity of noisy pixels in the final dataset.
Several shadowed pixels in the edges of the tree were included
in the final mask. The way the ground data was collected, catego-
rizing healthy tree or infected tree instead of portions or branches
of the tree, forced us to include all possible pixels (also edge mixed
pixels) since the infected leaves could be anywhere within the tree
canopy.

The segmented tree images taken from the aircraft composed of
an average of 51 pixels whereas each tree in the UAV-based image
composed of around 4849 pixels. This indicates that almost 100
times more pixels represented the same canopy area by the
UAV-based camera, thus allowing more canopy details being cov-
ered by the sensing system. This difference is also important in
terms of mixing at pixel level of different ground features since
the higher the spatial resolution, the lower will be the influence
the spectral mixing (i.e. there is a softer transition from pure veg-
etation to ground represented by higher amount of pixels). This al-
lows better identification of ground features.

3.2. Spectral reflectance and vegetation indices

Healthy and infected trees presented variable reflectance pat-
tern in the six bands and spatial resolution played a role in the pat-
tern of the signal response (Fig. 4). HLB-infected trees reflected
higher amount of light in the visible region of the electromagnetic
spectrum, while their reflectance was weaker than healthy trees in
the near infrared region, showing similar trend as those of ground
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Fig. 4. Average spectral reflectance values of 19 healthy and 19 HLB-infected trees
segmented from aircraft and UAV-based images.
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measurements conducted by Li et al. (2012). Moreover, the
UAV-based data were in agreement with the ground reflectance
measurements much more often than the aircraft-based data.
Statistical analysis (t-test with 5% level of significance) indicated
that most of the DN values acquired from UAV and aircraft
images were statistically different with very few exceptions. The
exceptions were DN values at 690 nm for HLB-infected trees, and
at 900 nm for both healthy and HLB-infected trees. The image
resolution could have played a major role, which might have re-
sulted in a lower mixing of ground features and leaf pixels in the
UAV-based images.
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Fig. 5. Comparison of selected vegetation indice
The difference between the healthy and HLB-infected canopy
reflectance was minimum at around 690 nm irrespective of spatial
resolution. On the other hand, at about 710 nm, the difference due
to spatial resolution of the image was maximum. Finally, at
900 nm, the reflectance values from healthy and HLB-infected trees
were similar, regardless of pixel size of the image.

The indices studied reflect the plant physiological status; hence,
the healthy canopy is expected to have higher values of NDVI,
GNDVI, SAVI, NIR-R, G/R and NIR/R. However, plants affected by
any physiological stress or perturbation (e.g. HLB bacteria) will
have higher R/NIR values than healthy ones. The results showed
the expected trend (Fig. 5), although differences in some indices
were less prominent than in other indices. Greater differences be-
tween healthy and infected trees could be seen in indices NIR-R
and NIR/R. Shadows may lead to overestimation (e.g. NDVI, SAVI,
NIR/R) and underestimation (e.g. R/NIR) of some indices (Ranson
and Daughtry, 1987). The shadow might have led to higher varia-
tion in NIR/R and G/R indices. There were variations in vegetation
indices acquired from aircraft and UAV-based images. However,
the NDVI and SAVI values were of similar range for both aircraft
and UAV-based images.
3.3. Classification results

Stepwise discriminant analysis was used in order to reduce the
features in the datasets leaving the ones presenting higher discrim-
inatory power for classification. In datasets drawn from aircraft
images, AC-I and AC-III, containing six and thirteen spectral fea-
tures respectively, two prominent variables were found in each
lthy HLB Healthy HLB Healthy HLB Healthy HLB
IR-R G/R x10 NIR/R x10R/NIR x100
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s for (a) aircraft and (b) UAV-based images.



Table 1
Dataset description from aircraft (AC) and unmanned aerial vehicle (UAV)-based
images. Stepwise regression analysis (sRA) used for feature reduction.

Dataset Feature
extraction
method

Features

AC-I None b530,b560, b660,b690,b710,b900
AC-IIa sRA b710,b900
AC-III None b530,b560, b660,b690,b710,b900,

NDVI,GNDVI,SAVI,NIR-R,R/NIR,G/R,NIR/R
AC-IVb sRA b710,NIR-R
UAV-I None b530,b560, b660,b690,b710,b900
UAV-IIc sRA b560,b710, b900
UAV-III None b530,b560, b660,b690,b710,b900,NDVI,GNDVI,

SAVI,NIR-R,R/NIR, G/R,NIR/R
UAV-IVd sRA b560,b710, NIR-R,G/R

a Derived from dataset AC-I.
b Derived from dataset AC-III.
c Derived from dataset UAV-I.
d Derived from dataset UAV-III.
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case (AC-II and AC-IV in Table 1). In the same way, datasets origi-
nated from UAV images were reduced to three (UAV-I generated
UAV-II) and four variables (UAV-III generated UAV-IV). Spectral
features such as b710 was common in all datasets, which indicates
the significance of red-edge inflection point in vegetation spectra
that indicates physiological stress (Li et al., 2012). As indicated in
Table 1, AC-II and UAV-II derived from datasets AC-I and UAV-I
were consistent on finding as representative features b710 and
b900. In the similar fashion, AC-IV and UAV-IV derived from data-
sets AC-III and UAV-III, respectively found b710 and NIR-R as sig-
nificant features, while in UAV-IV dataset two additional features
were found (b560 and G/R) (Figs. 6 and 7).

The vegetation green peak was identified as statistically rele-
vant only in the images taken with the UAV. This could be due to
the higher spatial resolution (smaller pixel size) used in this
images and narrow spectral resolution (5 nm) of the hyperspectral
image acquired using aircraft. The results obtained in this study in
terms of relevant representative feature selection were in
accordance with previous work using ground-based spectral data
(Sankaran et al., in preparation). In previous work, the reflectance
values at 530, 660 and 710 nm were found to show maximum
separability between healthy and HLB-infected trees.
Fig. 6. False color images (R = 900 nm, G = 690 nm and B = 560 nm) and images of few sig
from aircraft.
Each of the eight datasets was randomly divided into training
and testing datasets 10 times (i.e. 10 iterations). Each of the ran-
domized datasets were reproduced such that the classification
method was tested with the same dataset. The average overall clas-
sification accuracy and false negatives (i.e. infected trees classified
as healthy) are summarized in Table 2. In few cases, classification
accuracies could not be acquired from LDA and QDA, due to classi-
fier limitations. The statistical analysis is also summarized in Ta-
ble 3. In most cases, except QDA, there was a difference in
classification accuracies and number of false negatives between
aircraft and UAV-based images.

The classification using SVM algorithm (with and without ker-
nel) resulted in higher accuracies and lower false negatives per-
centages (Table 2). Also the spatial resolution of the images
helped to improve the classification, achieving higher performance
in the datasets extracted from high-resolution UAV images
(5.45 cm pixel�1) than those of aircraft-based images. The highest
classification accuracy was 85%, found with SVM using kernel with
sigma (r) 1.3 with high-resolution images consisting of six spectral
bands (UAV-I). The lowest false negatives during classification was
found with SVM classification using a dataset UAV-III composed of
13 features (six spectral bands and seven vegetation indices)
where the 7% of infected trees were classified as healthy (Table 2).
The best classifier would be the one that results in high classifica-
tion accuracy, while maintaining low false negatives. In this study,
the ideal scenario was while using UAV-I dataset and SVM with
kernel (r = 1.3) classifier that yielded 85% accuracy and 11% false
negatives. SVM is a linear classifier and forms an optimal hyper-
plane that maximizes the margin between the classes to be sepa-
rated. When a kernel is considered, the non-linear separable data
is mapped to a higher dimensional space where the linear classifi-
ers become valid. In that sense, SVM with kernel are more flexible
adapting the separation plane in a more appropriate way to the
data clusters. As a result, the SVM classifier with kernel allowed
for a better separation and classification of the data, in comparison
to other models.

In most cases, the classification accuracy improved after reduc-
ing the dataset and selecting the relevant features with stepwise
regression analysis whereas there is not clear pattern concerning
false negative percentage. Previous work showed that classification
accuracy of about 90% could be achieved using the broad range of
visible-near infrared spectra while classifying HLB-infected trees
from those of healthy ones (Sankaran et al., 2011). Nevertheless,
nificant spectral features of representative healthy and HLB-infected trees acquired



Fig. 7. False color images (R = 900 nm, G = 690 nm and B = 560 nm) and images of few significant spectral features of representative healthy and HLB-infected trees acquired
from UAV-based corrected images.

Table 2
Average overall classification accuracy and false negatives (FN) after 10 iteration using linear and quadratic linear discriminant analysis (LDA and QDA) and support vector
machine (SVM) without and with kernel.

Datasets LDA QDA SVM SVM (r kernel)

Accuracy (%) FN (%) Accuracy (%) FN (%) Accuracy (%) FN (%) Accuracy (%) FN (%)

AC-I 62 45 64 28 63 45 63 (2.0) 38
AC-II 68 37 73 40 68 40 71 (2.0) 40
AC-III – – – – 61 37 74 (2.0) 37
AC-IV 68 37 74 30 70 37 74 (2.0) 37
UAV-I 75 23 67 28 74 27 85 (1.3) 11
UAV-II 79 17 74 23 77 22 84 (0.9) 15
UAV-III 69 20 – – 78 7 75 (1.5) 17
UAV-IV 82 32 76 23 80 20 80 (2.0) 25

Table 3
Probability values acquired from statistical analysis (t-test) comparing the aerial images acquired from aircraft and UAV, based on the classification algorithm at 5% level of
significance.

Datasets LDA QDA SVM SVM (r kernel)

Accuracy FN Accuracy FN Accuracy FN Accuracy FN

I 0.0085 0.0046 0.6864a 0.1195a 0.0408 0.0333 0.0002 0.0022
II 0.0319 0.0006 0.8699a 0.2791a 0.0645a 0.0085 0.0118 0.0017
III – – – – 0.0010 0.0006 0.0007 0.0064
IV 0.0040 0.0024 0.7404a 0.2459a 0.0284 0.0177 0.1859a 0.1360a

a Statistically the accuracies/false negatives were not different between the aircraft and UAV-based images.
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in this study, we could achieve a good classification accuracy of
about 85%, which were comparable to the accuracy acquired based
on similar ground-based sensors (Sankaran et al., in preparation).
Pixels representing shadow region of the canopy should be avoided
as recommended by Suárez et al. (2010). However, this was not
carried out in this research as the area representing the infected
branches was not located in the canopy, which might be in shad-
owed area as well. Our future studies will involve selecting the pix-
el of infected branches for classification to further improve the
performance of the classifiers.
4. Conclusions

Multispectral images of citrus orchards were acquired at two
different altitudes using multiple aerial sensing platforms, there-
fore, yielding different spatial resolution (0.5 m and 5.45 cm per
pixel). Ground truthing of healthy and HLB-infected trees along
with the GPS position was recorded and the same trees were iden-
tified and segmented from both aircraft and UAV-based images.
Datasets composed of a combination of mean tree reflectance in
six spectral bands and vegetation indices. Feature selection was
performed using stepwise regression analysis to extract relevant
features in UAV-based datasets and aircraft-based images. Features
b710 nm and NIR-R index were found to be significantly different
between healthy and HLB-infected trees at both spatial resolutions.
However, in UAV-based images, in addition to the spectral fea-
tures, b560 (green) was found to be prominent.

Four classification algorithms were used in order to classify
healthy and infected trees. UAV-based datasets yielded better clas-
sification accuracy (67–85%) and lower false negatives (7–32%)
than the corresponding aircraft-based datasets (61–74% and 28–
45%, respectively). Among classification methods, SVM with kernel
performed generally better than SVM, LDA and QDA. The best clas-
sification results with 85% accuracy and 11% false negatives were
found with UAV-based aerial images, which indicate possibilities
for high resolution multispectral imaging for citrus greening detec-
tion. Considering the symptoms at lower scale (i.e. branch level),
images taken with UAV at low altitudes could become a reliable
tool for disease detection.

Scouting is one of the key practices in HLB disease control. Aer-
ial remote sensing with high-resolution imaging showed a great
potential for detecting HLB-infected trees, and could be used as a
rapid sensing technology to aid in the scouting process. This tech-
nology can reduce scouting costs and improve scouting efficien-
cies. Although, the sensing system in its current form is suitable
for small- and medium-sized growers, the sensing platform and
classification algorithm should be further improved to accommo-
date applications in large orchards. One of the limitations is the
flight time, which depends on the payload. The UAV used in this
study has a flight time of 10–20 min depending on the payload
and can stay suspended in its position to acquire multiple images
for a short period. Similar aerial platform could be flown for 2.5 h
with 1 kg payload (Zarco-Tejada, 2011). Our future work will in-
volve improving the image acquisition factors and study of tempo-
ral effect in aerial sensing of diseased citrus trees.
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