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a b s t r a c t

In recent years, Huanglongbing (HLB) also known as citrus greening has greatly affected citrus orchards

in Florida. This disease has caused significant economic and production losses costing about $750/acre for

HLB management. Early and accurate detection of HLB is a critical management step to control the spread

of this disease. This work focuses on the application of mid-infrared spectroscopy for the detection of

HLB in citrus leaves. Leaf samples of healthy, nutrient-deficient, and HLB-infected trees were processed

in two ways (process-1 and process-2) and analyzed using a rugged, portable mid-infrared spectrometer.

Spectral absorbance data from the range of 5.15–10.72 �m (1942–933 cm−1) were preprocessed (baseline

correction, negative offset correction, and removal of water absorbance band) and used for data analysis.

The first and second derivatives were calculated using the Savitzky–Golay method. The preprocessed

raw dataset, first derivatives dataset, and second derivatives dataset were first analyzed by principal

component analysis. Then, the selected principal component scores were classified using two classifica-

tion algorithms, quadratic discriminant analysis (QDA) and k-nearest neighbor (kNN). When the spectral

data from leaf samples processed using process-1 were used for data analysis, the kNN-based algorithm

yielded higher classification accuracies (especially nutrient-deficient leaf class) than that of the other

spectral data (process-2). The performance of the kNN-based algorithm (higher than 95%) was better

than the QDA-based algorithm. Moreover, among different types of datasets, preprocessed raw dataset

resulted in higher classification accuracies than first and second derivatives datasets. The spectral peak in

the region of 9.0–10.5 �m (952–1112 cm−1) was found to be distinctly different between the healthy and

HLB-infected leaf samples. This carbohydrate peak could be attributed to the starch accumulation in the

HLB-infected citrus leaves. Thus, this study demonstrates the applicability of mid-infrared spectroscopy

for HLB detection in citrus.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

U.S. is the second largest producer of citrus in the world [1],

producing up to 9.8 million tons of citrus each year. In Florida,

there are approximately 550,000 acres of citrus orchards producing

several varieties of citrus and supporting 9.3 billion dollar cit-

rus based-industries. According to the USDA Foreign Agricultural

Service Report, orange production in 2009–2010 season declined

by few hundred thousand metric tons compared to 2008–2009

season [1]. Among various factors, citrus diseases have been the

prominent reasons for the precipitous decline in production. Huan-

glongbing (HLB) or citrus greening is a devastating vector-based

disease caused by the phloem-limiting bacteria Candidatus Liberib-

acter spp. that threatens the economics of citrus production in

Florida and other parts of world. Researchers, citrus industries, and
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E-mail address: ehsani@ufl.edu (R. Ehsani).

other stakeholders are working together to control and eliminate

the disease for sustainable citrus production. HLB spreads through

the vector Asian citrus psyllids (Diaphorina citri Kuwayama) that

transmits the bacteria from tree to tree upon feeding. Once infected,

citrus trees develop typical symptoms such as yellowing and thick-

ening of veins or the entire leaf, blotchy leaf appearance, and

formation of deformed, asymmetric fruit. Progression of the dis-

ease leads to tree decline, dieback of twigs, and finally tree death.

The time period between the HLB-infection and the appearance of

symptoms, as well as the time period between HLB-infection and

tree death, depends largely on age, cultivar, and physiological status

of the tree. The time period between the HLB infection and symp-

tom appearance can range between six months and two years, time

during which the psyllids can acquire the bacterial pathogen from

non-symptomatic trees and further spread the disease [2]. Simi-

larly, a young tree can be killed within one to two years after HLB

infection [3].

The current disease management practices to control HLB

and maintain productivity include bacterial inoculum reduction

0039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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Fig. 1. (a) Mid-infrared spectrometer, (b) healthy, (c) HLB, and (d) nutrient-deficient leaves.

through disease detection and removal of HLB-infected trees, vec-

tor control through pesticide application, and replanting new citrus

cultivars to maintain future productivity [2]. Presently, scouting for

visible symptoms of HLB is the only available method for the selec-

tion of suspect plant material. Once identified by the scouting crew,

the leaves are randomly sent to the laboratory for polymerase chain

reaction (PCR) analysis for confirming the presence of bacteria.

HLB detection is a critical step in disease management. Once

the HLB-infected trees are identified, the infected trees are imme-

diately removed to prevent further spread of the disease. One of the

major challenges in identifying leaf symptoms for HLB detection is

the resemblance of the yellowing patterns between HLB-infected

leaves and other nutrient-deficient conditions (such zinc, iron, and

manganese) in leaves. In addition, with the scouting efficiency of

visual symptoms varying from 50 to 60% in a single survey [2,4],

there is a need for an efficient field-based sensing technique for HLB

detection in citrus leaves. Spectroscopic techniques offer a real-

time, rapid field-based detection of HLB. This study explores the

applicability of mid-infrared (MIR) spectroscopy for HLB detection

in citrus leaves. The MIR region of the electromagnetic spectra can

be used for detecting biochemical compounds such as sugars and

acids in leaves and in other materials such as corn, soil, jellies, food

supplements and cotton trash [5–11].

In this study, a portable, mid-infrared spectrometer was used

for detecting HLB in citrus leaves. This work evaluates the poten-

tial of mid-infrared spectroscopy in distinguishing the HLB-infected

leaves from nutrient-deficient and healthy leaves.

2. Materials and methods

2.1. Sample preparation

Four to six leaves from 44 healthy, 17 nutrient-deficient, and

54 HLB-infected citrus trees, located at the Citrus Research and

Education Center (CREC) groves, Lake Alfred, FL were collected.

The HLB-infected samples consisted of symptomatic leaves with

blotchy mottle or some yellowing. The HLB-infected leaves were

collected from trees confirmed as HLB-infected by PCR analysis. The

nutrient-deficient leaves, having typical nutrient-deficient symp-

toms, were identified by well-trained scouting team members of

CREC groves. These leaves were collected from the grove blocks that

were free from HLB infection. The leaves were acquired in batches

to process the leaf samples within 24–48 h.

Orange trees sampled were of Hamlin, Valencia, and Midsweet

varieties. In addition, some grapefruit samples were also analyzed.

The leaves were processed in two different ways, termed process-

1 and process-2, henceforth. In process-1, the leaves (four to six

leaves for each sample) were processed by directly grinding them

into fine powder under liquid nitrogen. In process-2, the leaves

were dried in a forced draft oven for 48 h at 70 ◦C, followed by

grinding using a CyclotecTM 1093 sample mill (Foss North Amer-

ica, Eden Prairie, MN). The ground leaf samples were stored in vials

and used for spectral data collection using a portable mid-infrared

spectrometer.

2.2. Data collection

An InfraSpec VFA-IR spectrometer (Wilks Enterprise Inc., East

Norwalk, CT), was used to collect the mid-infrared spectra in the

range of 5.15–10.72 �m (1942–933 cm−1) with 0.04 �m resolution.

This portable instrument (Fig. 1) was interfaced with a computer via

a USB connection and operated in attenuated total reflection (ATR)

mode. The operational set-up of the spectrometer was controlled

using Igor Pro 6.01, a program provided by the manufacturer. The

program allows preprocessing of the spectral data such as baseline

correction, peak area estimation, and quantitative analysis among

others. Both the reflectance and absorbance spectra can be acquired

from the instrument. Some of the features of the instrument are

summarized in Table 1. The processed healthy, nutrient-deficient,

and HLB-infected leaf samples (Fig. 1) were placed on the top of the

ATR crystal window (50 mm × 16 mm) of the spectrometer (with-

out any pressure), covered with a polycarbonate sample cover,

and spectral reflectance data were collected. Each spectrum rep-

resented 30 complete scans (for all wavelengths) of 1 s each (total

time for scan was 30 s). The blank crystal (without any sample) was

taken as the sample background.

Table 1
Features of mid-infrared spectrometer.

Parameters Features

Dimensions 7 cm × 15.25 cm × 16.5 cm

Wavelength range 5.15–10.72 �m (1,942–933 cm−1)

Detector array 128 Pixel linear pyroelectric array

ATR crystal Zinc selenide

ATR surface size 50 mm × 16 mm

No. of reflections/measurement 10
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For each sample (collection of 4–6 leaves), about four to five

reflectance spectra were collected and each spectrum was con-

sidered as a replicate. The data was not balanced manually to

include as many as data points as possible. Few healthy and HLB-

infected trees were sampled twice. The number of spectra collected

from leaf samples processed using process-1 was 263, 84 and

327 for healthy, nutrient-deficient, and HLB-infected leaf samples,

respectively. Similarly 134 healthy, 50 nutrient-deficient, and 193

HLB-infected sample spectra were collected from process-2 based

leaf samples. The overall data consisted of 128 spectral reflectance

or absorbance values for each sample.

2.3. Starch analysis

Selected leaf samples were analyzed for starch content to deter-

mine whether there was a difference in starch concentrations

among the leaf samples. The starch analysis protocol was obtained

from the Plant Cell Physiology research group at CREC, Lake Alfred,

FL. For quantification of starch in leaves [12], leaf tissue samples

(circle of 27.3 mm2) were homogenized at 6500 rpm using a tis-

sue homogenizer. Homogenization was performed for a total of

80 s in two cycles of 40 s using disposable 2 mL plastic tubes and

4 metal beads of 2.38 mm diameter (Mobio Laboratories, CA) with

500 �L of distilled water. After homogenization of the leaf tissue,

the metal beads were removed and the tubes with the homoge-

nized tissue boiled at 100 ◦C for 10 min, after which the samples

were centrifuged for 2 min at 2500 rpm in order to precipitate

any residual leaf tissue debris. From the supernatant, 300 �L were

transferred to an Eppendorf tube, and 900 �L of pure ethanol were

added to precipitate the starch by centrifuging the tube for 10 min

at 10,000 rpm.

The supernatant was discharged and the pellet was resuspended

in 1 mL of distilled water by agitating the mixture in a vortex mixer

for 4 min. After re-suspension of starch pellet in 1 mL of water, 50 �L

of iodine solution (8.8 g potassium iodide + 2.2 g iodine per liter of

water) was added and absorbance of 250 �L of the sample (pipette

into enzyme linked immune-sorbent assay, ELISA plates) was mea-

sured at 595 nm using ELISA microplate Reader Model 680 (BIORAD,

California). The concentration of starch in the sample was calcu-

lated using a standard curve of starch-iodine made with pure rice

starch from SIGMA. In addition to the quantitative analysis of starch

content in the leaves, spectral signatures of different types of starch

(potato, rice, and wheat) were also acquired. Water content of few

healthy, nutrient-deficient, and HLB-infected leaves (Hamlin) was

also measured. Water content in the leaves was measured by mon-

itoring the percent loss of moisture by drying the leaf samples for

48 h at 70 ◦C.

2.4. Data preprocessing

The two spectral datasets collected from leaf samples were

preprocessed before further analysis. Visual observation of the

spectral data showed the presence of two absorbance peaks, one

in the wavelength range from 5.5 to 6.5 �m (1538–1818 cm−1)

and another in the wavelength range from 9 to 10.5 �m

(952–1112 cm−1). The 5.5–6.5 �m peak was confirmed to be due

to the presence of water. The MIR spectra of the water are pre-

sented in Fig. 2a. The peak between 9 and 10.5 �m (952–1112 cm−1)

was attributed to the carbohydrates present in the leaves [6,8,13].

The peak absorbance of HLB-infected samples in the spectral range

5.5–6.5 �m (water) was found to be higher than that of healthy

samples. A preliminary study was performed to determine if there

was a noticeable difference in the water content between healthy,

nutrient-deficient, and HLB-infected leaves (Hamlin). Results indi-

cated that there was no noticeable pattern in moisture content

between the healthy and HLB-infected leaves (Fig. 2b). Therefore,

Fig. 2. (a) Water spectra and (b) water content in citrus leaves.

the MIR spectra of the samples were baseline corrected using Igor

Pro 6.01 from 6.82 to 10.72 �m (1467–933 cm−1), excluding the

water absorbance spectra. The program corrects each spectrum

such that a linear fit is drawn across the selected region and then,

the spectrum is shifted so as to convert calculated fit line with

zero slope and intercept. The 90 spectral features from wavelength

range of 6.82–10.72 �m were considered for further analysis. A

few representative spectra of healthy, nutrient-deficient, and HLB-

infected leaves processed by two methods are presented in Fig. 3.

After the baseline collection, the area of the region, peak location

(wavelength), and peak absorption values were acquired for each

spectrum in the range 9–10.5 �m (1110–952 cm−1) using Igor Pro

6.01 program.

The baseline correction was required to bring the absorbance

values to a comparable scale. After baseline correction, as some

of the absorbance values were below zero, an offset correction was

performed to convert the spectral absorbance greater than or equal

to zero for better presentation. This was done using simple mathe-

matical manipulation by estimating the minimum value and adding

to all the absorbance values in the spectrum. The preprocessed MIR

spectra were used for further analysis. The preprocessed spectral

data acquired from leaf samples, processed using process-1 and

process-2 is termed dataset-1 and dataset-2, hereafter. The first and

second derivatives were calculated from the preprocessed datasets

using the Savitsky–Golay filter [14]. In Savitzky–Golay filtering, an

unweighted linear least-square fit based on polynomial equation is

used to calculate the filter coefficients. The Savitzky–Golay filtering

performs data smoothing, in addition to calculating the derivatives

[15]. The derivatives were calculated using a window size of five

and a second order of polynomial (quadratic). For each leaf sam-

ple, 85 first and second derivatives were derived from 90 spectral

absorbance values.
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Fig. 3. Representative baseline corrected absorbance spectra (raw data) of leaf sam-

ples processed using (a) process-1 and (b) process-2.

2.5. Pattern recognition

The preprocessed raw dataset, first derivatives dataset, and sec-

ond derivatives dataset derived from dataset-1 and dataset 2 were

analyzed separately. In each dataset, principal component analysis

(PCA) was performed to reduce the dimensionality of the data, and

number of principal components (PCs) were selected such that the

PCs represented >99% variability within the data. The coefficients or

loadings of PCA are generated based on the original variables that

yield the PCs. The scores generated using selected PCs (selected

based on variability each PC accounts for and total variability)

were used as input features in pattern recognition algorithms. The

datasets containing PCs were randomized and separated into train-

ing and testing datasets such that their ratio was about 3:1.

Two different multivariate classification algorithms, quadratic

discriminant analysis (QDA) and k-nearest neighbors (kNN) were

used for classifying spectral features of the leaf samples (healthy,

nutrient-deficient and HLB-infected leaves). Both these technique

have been used for various classification applications in literature

[15–18]. The kNN-based algorithm classifies the unknown samples

in the test dataset by determining the group/class of its ‘k’ nearest

Fig. 4. The variation in the data as explained by the number of principal components

in each dataset.

neighbors (shortest distance). In QDA, multivariate normal densi-

ties are derived from the covariance estimates stratified from each

sample group. In case of larger number of PCs, a negative covari-

ance matrix was generated that cannot be classified using QDA.

In such cases, PCs accounting for 90% variability within the data

were used as input in the QDA-based classification to generate

a positive covariance matrix. The classification algorithms were

tested five times, and the overall and individual class (healthy,

nutrient-deficient, and HLB) classification accuracies were deter-

mined. All the preprocessing and classification was performed

using the MATLAB® 7.6 program (The MathWorks Inc., Natick, MA).

In summary, the preprocessed raw dataset, first derivatives

dataset and second derivatives dataset derived from the dataset-1

(process-1) and dataset-2 (process-2) were analyzed using two dif-

ferent algorithms (QDA and kNN). The principal components were

calculated from each of the six datasets (2 processes × 3 types of

dataset) and the number of PCs explaining the percent variation

in the data is shown in Fig. 4. Based on the variation as described

by the number of PCs, the PC scores were selected, randomized,

and separated into training and testing datasets. The training and

testing datasets from dataset-1 consisted of 506 and 168 data

points, while those from dataset-2 consisted of 283 and 94 data

points, respectively. Henceforth, class 1, class 2, and class 3 refer to

healthy, nutrient-deficient and HLB-infected leaf sample spectra,

respectively. For each dataset and each test run, a confusion matrix

(sample matrix as shown in Table 2) was generated to calculate

the overall and individual class classification accuracies. Due to the

large amount of data available, the confusion matrices of all the

test runs are not shown in the manuscript. Once the classification

accuracies (overall and individual class) of the five test runs were

determined, the average classification accuracies were calculated.

2.6. Comparison of means

The average of specific spectral features (area of region, peak

location, and peak absorption values) in the spectral range of

9–10.5 �m of the three sample treatments (healthy, nutrient-

deficient, and HLB-infected leaf sample spectra) were tested using

analysis of variance (ANOVA). In addition to these specific spec-

tral features, statistical analysis of the classification accuracies was

Table 2
Sample confusion matrix generated while testing kNN-based algorithm on test dataset (preprocessed raw data).

Predicted

Class 1 Class 2 Class 3 No. of samples Accuracy (%) Class 1 Class 2 Class 3 No. of samples Accuracy (%)

Actual Process 1 (k = 1, 2) Process 2 (k = 5)

Class 1 62 – – 62 100.0 30 3 – 33 90.9

Class 2 1 26 – 27 96.3 2 9 – 11 81.8

Class 3 1 – 78 79 98.7 – – 50 50 100.0

Total 168 98.8 94 94.7
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Table 3
Average overall and individual class classification accuracies of different datasets as classified using QDA- and kNN-based algorithms.

Dataset Dataset-1 Dataset-2

PCs Overall Class 1 Class 2 Class 3 k PCs Overall Class 1 Class 2 Class 3 k

k-Nearest neighbor

Raw 19 99.2 99.4 99.3 99.1 1,2 73 93.6 95.3 79.6 96.6 5

First derivatives 43 98.8 99.2 98.9 98.4 1,2 62 87.7 84.7 77.3 92.6 3

Second derivatives 68 87.9 90.8 93.1 84.5 1,2 62 78.7 74.0 61.4 86.1 3

Quadratic discriminant analysis

Raw 19 79.6 82.9 92.1 73.9 24* 86.2 94.5 29.4 97.1

First derivatives 43 85.4 92.6 33.9 93.2 32* 80.9 93.6 0.0 91.6

Second derivatives 42* 74.6 79.3 16.7 87.5 36* 76.6 83.1 0.0 88.5

Note: PCs contribute 99% variation, except those marked (*with 90% variation).

also performed. The average classification accuracies as a result of

two processing methods (process-1 and process-2) and two algo-

rithms (QDA and kNN) were compared using a two sample t-test.

In addition, ANOVA was used to compare the average classification

accuracies that resulted from each type of data (preprocessed raw

data, first derivatives and second derivatives). During the statis-

tical analysis (ANOVA), Duncan’s multiple range test (DMRT) was

also performed, which compares the treatment means while con-

trolling the comparison-wise error rate. All the statistical analysis

was performed with 5% level of significance (˛ = 0.05) and using a

statistical program, SAS® 9.2 (SAS Institute Inc., Cary, NC, USA).

3. Results and discussion

3.1. Performance of classification algorithms

The average classification accuracies resulting from QDA- and

kNN-based algorithms for all six datasets are summarized in

Table 3. In the kNN-based algorithm, optimum ‘k’ was determined

by varying ‘k’ from 1 to 15 based on the maximum average classi-

fication accuracies for each dataset. The optimum ‘k’ for dataset-1

was found to be one and two; while, that for dataset-2 using pre-

processed raw and derivatives (both first and second) dataset was

found to be five and three, respectively.

Comparing the average classification accuracies of the three

datasets (raw, first derivatives, second derivatives) derived from

datatset-1, as analyzed using the kNN-based algorithm, it was

observed that the preprocessed raw and first derivatives datasets

yielded similar results. However, the second derivatives dataset of

the dataset-1 resulted in lower average overall classification accu-

racy (87%) than that of other two datasets (∼98%). The results from

DMRT indicated that the preprocessed raw and first derivatives

datasets yielded similar overall and individual class classification

accuracies, which differed from those of second derivatives dataset

(probability, p < 0.05). The only exception was class 2 (nutrient-

deficient) classification accuracies (p = 0.10), which were similar in

all the three datasets.

Comparing the average classification accuracies of the three

datasets (dataset-1) acquired from the QDA-based algorithm, it was

found that the preprocessed raw dataset yielded the highest clas-

sification accuracies. The first derivatives and second derivatives

datasets resulted in a very low average class 2 classification accu-

racies (16.7–33.9%), in spite of the first derivatives dataset giving

a good average overall, class 1 (healthy) and class 3 (HLB) classi-

fication accuracies. Duncan’s multiple range test through ANOVA

indicated that all the classification accuracies were different in the

three datasets, except for the class 1 classification accuracy which

was similar in preprocessed raw and second derivatives datasets.

In dataset-1, comparing the kNN and QDA-based algorithms,

it was found that the kNN-based algorithm performed better

than QDA-based algorithm yielding higher classification accuracy.

One-on-one comparison of classification accuracies resulting from

kNN- and QDA-based algorithms using statistical analysis (two

sample t-test) indicated that with an exception of class 3 classi-

fication accuracies of the second derivatives dataset, none of the

classification accuracies were similar. Among the three datasets,

in kNN-based algorithm, preprocessed raw and first derivatives

datasets resulted in high average classification accuracies (>98%);

while in the QDA-based algorithm, the raw dataset resulted in good

average classification accuracy.

In dataset-2, both kNN- and QDA-based classification algo-

rithms yielded higher average classification accuracies (overall

and individual class) using the preprocessed raw dataset, with

decreasing performance from the first derivatives to second deriva-

tives datasets. However, Duncan’s multiple range test indicated

that in the kNN-based algorithm, the preprocessed raw and first

derivatives datasets yielded similar average class 2 and class 3

classification accuracies. In the QDA-based algorithm, the first and

Fig. 5. Data analysis of preprocessed raw dataset using different classifiers.
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Table 4
Comparison of different spectral features extracted from leaf sample spectra using

statistical analysis.

Probability of null hypothesis (equal means) being true

Spectral features Process 1 Process 2

Peak absorbance <0.0001a <0.0001c

Peak location <0.0001a <0.0001a

Area of the region 0.0009b 0.0063c

a Three classes different through pairwise comparison.
b Classes 2 and 3 were similar.
c Classes 1 and 3 were similar; where class 1 refers to healthy, class 2 refers to

nutrient-deficient, and class 3 refers to HLB.

second derivatives datasets yielded similar average overall, class

2, and class 3 classification accuracies; while preprocessed raw

and first derivatives datasets resulted in similar average class 1

classification accuracies. Comparing the types of datasets, in both

kNN- and QDA-based algorithms, the kNN-based algorithm (pre-

processed raw dataset) exhibited higher classification accuracies

than the QDA-based model, especially for the average overall and

class 2 classification accuracies. Statistical analysis (two sample

t-test) confirmed these results demonstrating that the average

overall and class 2 classification accuracies were different (p < 0.02)

between kNN- and QDA-based models; while the average class 1

and class 3 classification accuracies were similar (p > 0.81). In all

the datasets, the preprocessed raw dataset resulted in good average

overall and individual class classification accuracies (Fig. 5).

In addition to the different types of datasets (preprocessed raw,

first and second derivatives) and the classification algorithms (kNN

and QDA), the results from two different datasets processed in two

different ways (process-1 and process-2) were also compared. A

two sample t-test indicated that in the QDA-based algorithm, there

was a significant difference in overall average and in individual class

classification accuracies between dataset-1 and dataset-2. How-

ever, while analyzing the datasets with the kNN-based algorithms,

although the average overall and class 2 classification accura-

cies showed some difference (p < 0.02), the average class 1 and

class 3 classification accuracies were found to be similar (p > 0.12).

This indicates that the process-1 was effective in classifying the

nutrient-deficient (class 2) leaf sample spectra in comparison to

the process-2. Moreover, the kNN-based algorithm showed a lower

coefficient of variation in classification accuracies during dataset-1

analysis than those acquired from dataset-2 analysis.

To summarize the results, the kNN-based algorithm (in both

dataset-1 and dataset-2) was found to be best suited for classify-

ing the data with high classification accuracies (>95%) among the

two algorithms. In addition, among the different datasets, the pre-

processed raw dataset resulted in higher classification accuracies

than first and second derivatives datasets, especially for dataset-2

using the kNN-based algorithm. When the false negative samples

(HLB-infected samples classified as healthy or nutrient-deficient)

were observed, it was found that most of the HLB-infected samples

were classified as healthy rather than nutrient-deficient samples

in all datasets except first derivatives-dataset 2 during kNN-based

classification.

3.2. Spectral features

The statistical analysis of the spectral features (peak absorbance,

peak location, and the area of the region) derived from the MIR

spectral region from 9.0 to 10.5 �m indicated that at least average

(comparison of means) of one of the classes were different from

others (Table 4). Further analysis of pairwise comparison indicated

that the peak absorbance and peak location of the three classes

were different in process-1 spectral data; while peak location was

different in process-2 spectral data among three classes. Thus, peak

absorbance and peak location can be used as an indicator to identify

HLB-infected leaf spectra, if the leaves are processed using process-

1. In process-1, there a distinct difference in the absorbance of the

starch peak (Fig. 3a). Thus, it can be stated that the difference in rel-

ative concentration of starch could be used as an indicator to HLB

detection, if the leaves were processed in such manner (process-1).

However, the leaf samples processed by process-2 did not show a

difference in the absorbance in starch peak spectra (Fig. 3b). Statis-

tical results demonstrated similar results, with no major difference

in peak absorbance values, but some difference in the peak location

values between the treatments. The peak location can be used for

identifying HLB-infected spectra if the leaf samples are processed

using process-2.

In addition to the spectral features derived from the MIR

spectra, classification was performed using the kNN-based algo-

rithm directly on the preprocessed raw spectral data in the range

9–10.5 �m (without principal component analysis). The ‘k’ used for

dataset-1 and dataset-2 was one and five, respectively. The overall

and individual class classification accuracies are presented in Fig. 6.

The results indicated that the spectral absorbance values in the

spectral range 9–10.5 �m could be used for classifying the different

classes of leaf samples. High classification accuracies of >97% were

achieved during the analysis of dataset-1, while the accuracies were

lower with dataset-2 analysis. The results indicate that process-1

shows promises in detecting HLB under field conditions.

3.3. Starch analysis

Starch is known to accumulate in HLB-infected leaves compared

to nutrient-deficient and healthy leaves [19–23]. The starch quan-

tity in HLB-infected leaves can be about 8.5–20 times higher than

that of healthy leaves in sweet oranges [24,25], which accumulate

little or no starch. In addition, researchers have found that starch

accumulation may occur even before the symptoms appear in

HLB-infected leaves [12]. The starch build-up results from phloem

blockages due to phloem limiting bacteria. Excessive starch leads to

disintegration of the chloroplast thylakoid system resulting in leaf

yellowing, a condition that may also occur due to branch breakage

[25,26]. Thus, starch could be used as an indicator to HLB-infection

in leaves. In this study, we monitored starch content in healthy and

HLB-infected leaves of three different citrus varieties (Fig. 7a).

Starch concentration was consistently and significantly higher

in HLB-infected leaves than in healthy leaves in all varieties tested.

Our results also showed that starch content was also lower in

nutrient-deficient leaves (similar to healthy leaves) compared to

those of HLB-infected leaves. Therefore, it could be stated that

starch detection above some threshold value using mid-infrared

spectroscopy could aid in HLB detection.

Fig. 6. Analysis of spectral data in specific wavelength range (9.0–10.5 �m) using

k-nearest neighbor-based algorithm.
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Fig. 7. Starch analysis: (a) quantitative analysis of starch in some varieties of oranges (mean ± standard deviation) and (b) spectral features of some types of processed starch.

The peak in the MIR spectral range 9.0–10.5 �m

(952–1112 cm−1) is attributed to the presence of carbohydrate

(starch) in leaves. Several researchers have studied carbohydrates

using MIR spectroscopy and found that carbohydrate vibration

band occurs in this region [5,6,8,13,27]. In addition, in this study,

mid-infrared spectra of different types of starch were collected

(Fig. 7b). The spectral signature of processed starch types indicated

the presence of peak in the spectral region from 9 to 10.5 �m.

Studies have been conducted for detecting HLB in citrus leaves

using Fourier transform infrared (FTIR) spectroscopy [13,27]. Some

of the differences with this work are in the sample collection,

sample preparation techniques, MIR instrument, and data analysis

protocol. Hawkins et al. [13,27] found a similar peak in spectral

range from 900 to 1150 cm−1. Similarly, a study on the application

of FTIR spectroscopy on selected carbohydrates [8] reported that

the shape and intensity of the carbohydrate absorbance peak

varied based on the type of carbohydrates, humidity, and other

variables used in their study. Therefore, starch assessment in

citrus leaves exhibits a good potential to detect HLB under field

conditions.

4. Conclusions

This study investigates the applicability of mid-infrared spec-

troscopy for the detection of HLB in citrus leaves based on the

massive accumulation of starch in affected leaves. A portable, field-

based mid-infrared spectrometer operating in ATR mode was used

to acquire spectral signature in the range 5.15–10.72 �m from pro-

cessed leaf samples leaves. The results indicated that the spectra

of HLB-infected citrus leaves can be classified from the spectra of

healthy and nutrient-deficient samples using MIR spectroscopy.

The kNN-based algorithm yielded classification accuracies of >90%.

Further analysis of MIR spectra indicated that absorbance in spec-

tral range 9.0–10.5 �m played a significant role in classification,

which could be attributed to the starch present in the leaves.

The method was also effective in classifying the nutrient-deficient

leaves from that of healthy and HLB-infected leaves.

Future studies would involve the evaluation of this technique for

detecting non-symptomatic HLB-infected leaves. There has been

some indication that there might be one or more non-symptomatic

tree for every symptomatic tree present in the field [2]. Therefore,

it is critical to develop a field-based technique to not only detect

symptomatic (having similar symptoms as that of nutrient defi-

ciencies), but also to detect non-symptomatic HLB-infected leaves.

Further work involves the determination of a starch threshold that

would define HLB presence. One of the major benefits of this work

can be the integration of such simple, portable MIR instrument with

that of citrus mechanical harvesters for continuous monitoring of

HLB.
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