EFFECT OF TRANSPLANT TRAY TYPE AND TOMATO CULTIVAR ON THE INCIDENCE OF FUSARIUM CROWN AND ROOT ROT IN TOMATO TRANSPLANTS¹

R. J. McGOVERN Plant Pathology Dept. Southwest Florida Research and Education Center IFAS, University of Florida Immokalee, FL 34142

C. S. VAVRINA Horticultural Sciences Dept. Southwest Florida Research and Education Center IFAS, University of Florida Immokalee, FL 34142

L. A. MCKAY Plant Pathology Dept. Southwest Florida Research and Education Center IFAS, University of Florida Immokalee, FL 34142

Additional index words. Fusarium, oxysporum f.sp. radicislycopersici, Lycopersicon esculentum, styrofoam, steam disinfestation.

Abstract. The effect of transplant tray type and tomato (Lycopersicon esculentum Miller) cultivar on the incidence of Fusarium crown and root rot caused by the fungus Fusarium oxysporum f.sp. radicis-lycopersici (FORL) was examined in a commercial transplant house. Four common south Florida tomato cultivars. Agriset-761, PAP-34283, Sunbeam, and Sunny, were seeded in a peat-based medium in five different types of transplant trays, two polystyrene and three styrofoam trays with respective cell volumes of 19 and 28 cm³, and 6, 20, and 32 cm³. Six weeks after seeding, the roots and crown of eight randomly selected transplants from each tray type were surface disinfested and plated on Komada's selective medium for Fusarium oxysporum. Following removal of all transplants, and surface disinfestation, cotton tipped applicators dipped in sterile water were used to swab ten cells of each tray and to streak plates of Komada's. Isolation of FORL was assessed 5 days following incubation of plates at 28 C/82 F. No significant differences in varietal susceptibility to FORL were detected. Crown rot incidence was significantly highest in transplants from styrofoam trays with the largest cell sizes (20 and 32 cm³), and FORL was most frequently recovered from styrofoam trays. Steam disinfestation of styrofoam trays at 71 C/I 60 F for 45 min eliminated FORL.

Introduction

Fusarium crown and root rot of tomato, caused by the fungus Fusarium oxysporum f.sp. radicis-lycopersici (FORL), was first detected in Florida in 1974 (Sonoda, 1976). The disease has been reported from all major production areas of the state but is particularly severe in the acidic, sandy soils of southwest Florida. Fusarium crown and root rot has also occurred in Canada, Mexico, Israel, Japan, many countries in Europe, and other states in the United States (Jarvis, 1988). The disease has been a serious problem for transplant and greenhouse fruit production, and consistently decreases yields of fieldgrown, staked tomatoes in Florida. Incidences of crown rot in excess of 90% were commonly observed in tomato production areas of southwest Florida during the fall, 1992 and spring, 1993 seasons. Major outbreaks of FORL also occurred in tomato transplant production houses during the same period.

The pathogen is favored by cool temperatures and forms rugged resting spores (chlamy dospores), which enable it to survive in the soil and plant debris for many years. FORL also produces microconidia and macroconidia, the former of which has been implicated in the recolonization of sterilized soil in greenhouses through aerial dispersal (Rowe, 1977). The fungus can survive on wooden tomato stakes for at least one year (McGovern et al., 1992; McGovern, unpublished data). Early symptoms caused by FORL in tomato seedlings include stunting, yellowing, and premature abscission of cotyledons and lower leaves. A pronounced brown lesion that girdles the hypocotyl, root rot, wilting, and seedling death are advanced symptoms.

An experiment was conducted to determine the effect of tomato cultivar and transplant tray type on the incidence of FORL in commercially produced tomato transplants. The effectiveness of different methods of tray disinfestation was also compared in a separate experiment.

Materials and Methods

Detection of FORL in Tomato Transplants. The research was conducted in a commercial vegetable transplant house in the southwest Florida using conventional cultural practices. Seeds of four commonly used tomato cultivars, Agriset-761, PAP-34283, (Petoseed Co., Inc., Saticoy, CA), Sunny (Asgrow Seed Co., Inc., Kalamazoo, MI), and Sun-beam (Rogers NK, Minneapolis, MN) were surface disinfested in 1% NaOCI

¹ Florida Agricultural Experiment Station Journal No. N-00866. The use of trade names in this publication does not imply either endorsement or criticism of these products by the authors or the University of Florida.

for 30 min., rinsed with sterile deionized water, and seeded in a peat-based medium on 12 Dec. 1992. Two different types of polystyrene (Plantaway Ltd, Essex, U.K.) and three styrofoam transplant trays (Modern Polymer, Cherryville, NJ.), with respective individual cell volumes of 19 and 28 cm³, and 6, 20, and 32 cm³ were used. All trays had been previously used for commercial tomato transplant production and were washed with well water and surface-disinfested with an aqueous solution of a quaternary ammonium salt solution [Bear-Cat Disinfectant, H. Wilson Mfg. Co., Jefferson, GA (0.7 oz./gal. water)], using a custom built transplant tray washer. Five replicates of each cultivar by tray combination were arranged on benches in a randomized complete block design. Six weeks after seeding, the roots and crowns of eight randomly selected transplants from each tray were surface disinfested for 1 min in 10% NaOCl, rinsed with sterile deionized water, and plated on Komada's selective medium for F. oxysporum (Komada, 1975). Isolation of FORL was assessed 5 days following incubation of plates at 28 C/82 F. Separation of mean FORL incidences utilized a least significant difference procedure [LSD (p=0.05)] following square root transformation.

Detection of FORL in Transplant Trays. Following removal of all experimental transplants, trays were washed with well water and surface disinfested as above. Cotton-tipped applicators dipped in sterile, deionized water were used first to swab ten cells of each tray, and then to streak plates of Komada's medium. Colonies of FORL were counted 5 days following incubation of plates. Separation of mean FORL colonies utilized LSD.

Disinfestation of Styrofoam Transplant Trays. Styro- foam transplant trays with a cell size of 32 cm³, previously used for commercial tomato transplant production, were randomly selected for experimentation. Five disinfestation techniques were employed including a well water wash, a disinfectant (Bear-Cat) wash, a combined water wash and steam treatment (71 C/160 F for 45 min), a combined disinfectant wash and steam treatment, and an untreated control. Ten trays (replicates) were used for each treatment. Isolation techniques for FORL and mean separation procedures were as previously stated.

Results and Discussion

No significant differences in the incidence of FORL were detected among the four tomato cultivars examined (Table 1). These results concur with field and laboratory experiments, which also failed to detect significant differences in the incidence of the fungus among 'Agriset-761', 'PAP-34283', and 'Sunny' and other commonly used tomato cultivars (McGovern et al., 1993). Furthermore, no significant interactions were observed between tomato cultivar and either transplant tray type or cell size on incidence of the fungus (data not presented).

Crown rot incidence in transplants and recovery of FORL from trays was significantly highest from the largest styrofoam cells (20 and 32 cm³) (Table 2). The greater recovery of the fungus from styrofoam vs. plastic trays may be related to the presence of larger pores in the former which become more numerous as the styrofoam ages, making styrofoam trays more difficult to disinfest. Although the recovery of FORL was actually higher in the small-celled (6 cm³) styrofoam trays than from either of the two plastic types, no differences were observed in the incidence of the fungus in tomato transplants. This result may be related to the lower evaporation potential from plastic trays leading to a wetter growing medium, which appears to favor the disease (McGovern and Datnoff, 1992)

Table 1. The effect of cultivar on the incidence of *Fusarium oxysporum* f.sp. *radicis-lycopersici*(FORL) in tomato transplants

Tomato Cultivar	FORL Incidence (%) ^z
PAP- 34283	6.3a ^y
Agriset-761	4.6a
Sunny	3.9a
Sunbeam	2.9a

²Incidence based on planting the roots and crown of eight randomly selected transplants from 25 trays on Komada's selective medium for *Fusarium ozysporum*.

^yMeans followed by different letters are significantly different by LSD (P=0.05) following square root transformation. Nontransformed means are presented.

Table 2. The effect of transplant tray type on the incidence of *Fusarium oxysporum* f.sp. *radicis-lycopersici* (FORL) in tomato transplants and recovery of FORL from trays.

Transplant	Tray	Mean	Mean
Cell Size	Composition	FORL	Recovery of
(cm ³)		Incidence	FORL from
		in Tomato	Trays
		Transplants	(colonies/cell) ^x
		$(\%)^{z}$	
32	Styrofoam	11.9a ^y	26.5a ^w
20	Styrofoam	10.00a	17.2b
6	Styrofoam	0.6b	9.2c
28	Plastic	1.2b	3.0d
19	Plastic	2.0b	1.3d

²FORL incidence was determined by planting the roots and crown of eight randomly selected transplants from 25 trays of each type on Komada's selective medium for *Fusarium oxysporum*.

^XTem cells from 25 trays of each type were tested for FORL using Komada's medium.

^yMeans followed by different letters are significantly different by LSD (P-0.05) following square root transformation. Nontransformed means are presented.

^WMeans followed bydifferent letters are significantly different by LSD (P=0.05).

Table 3. Effect of disinfestation methods on the recovery of *Fusarium oxysporum* f.sp. *radicis-lycopersici* (FORL) from styrofoam tomato transplant trays.^z

Disinfestation Method	Mean Recovery of FORL from Trays (colonies/cell) ^x
Water Wash	54.7a ^w
Untreated Control	24.7b
Disinfectant Wash ^y	23.1b
Steam (160 F/45 min)	0.0c
+ Water Wash	
Steam (160 F/45 min)	0.0c
+ Disinfectant Wash	

^zTransplant trays had an individual cell size of 32 cm³

^yBear-Cat Disinfectant, H. Wilson Mfg. Co., Jefferson, GA (0.7 oz./gal water).

^xTen cells from ten trays of each treatment were tested for FORL using Komada's medium.

^wMeans followed by different letters are significantly different by LSD (P=0.05).

More propagules of the fungus were recovered from styrofoam trays washed with water alone than from the other disinfestations treatments (Table 3). Only steam disinfestation completely eliminated the fungus from the trays. Since separate studies indicated that irrigation water did not contain propagules of FORL, washing trays with water may have activated chlamydospores leading to an increase in FORL colony numbers. Steam disinfestation of transplant trays should be a routine sanitary operation in tomato transplant production to reduce crown rot occurrence. However, care must be taken when steamtreating trays so as not to exceed the temperature recommendations of the manufacturer or damage to the trays may result.

Literature Cited

- Jarvis, W. R. 1988. Fusarium crown and root rot of tomatoes. Phytoprotection 69:49-64.
- Komada, H. 1975. Development of a selective medium for quantitative isolation of *Fusmium oxysporum* from natural soil. Rev. Plant Prot. Res. 8:114-125.
- McGovern, R. J. and L. E. Datnoff. 1992. Fusarium crown and root rot: Reevaluation of management strategies. Pages 75-86 In C. S. Vavrina (Ed.) Proc. Florida Tomato Institute. Vegetable Crops Special Series SS-HOS-1, Vegetable Crops Department, University of Florida-IFAS, Gainesville, FL 32611.
- McGovern, R. J., L. E. Datnoff, I. Secker, C. S. Vavrina, J. C. Capece, and J. W. Noling. 1993. New developments in the management of Fusarium crown and root rot of tomato in Southwest Florida. Pages 45-64. *In C. S.* Vavrina (Ed.) Proc. Florida Tomato Institute. Vegetable Crops Special Series SS-HOS-1, Vegetable Crops Department, University of Florida-IFAS, Gainesville, FL 32611.
- Rowe, R. C., J. D. Farley, and D. L. Coplin. 1977. Airborne spore dispersal and recolonization of steamed soil by *Fusarium oxysporum* in tomato greenhouses. Phytopathology 67:1513-1517.
- Sonoda, R. M. 1976. The occurrence of Fusarium root rot of tomatoes in South Florida. Plant Dis. Rep. 60:271-274.