Field performance of Nano Magnesium oxide, a new antibacterial compound against bacterial spot of tomato

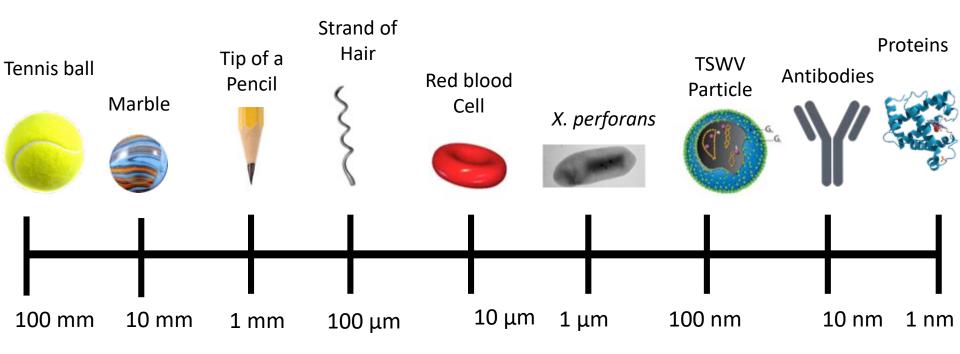
M. L. PARET (1,2), <u>Y. Y. Liao</u> (1,2), <u>A. L. Strayer</u> (1,2), S. Wright (1), M. Young (3), G. E. Vallad (4)-" S. Santra (3), J. B. Jones (2), J. H. Freeman (1)

- (1) North Florida Research and Education Center, University of Florida, Quincy, FL
- (2) University of Florida, Department of Plant Pathology, Gainesville, FL
- (3) NanoScience Technology Center, Department of Chemistry, University of Central Florida, Orlando, FL
- (4) Gulf Coast Research and Education Center, University of Florida, Wimauma, FL

Severe leaf spots due to bacterial spot

Bacterial Spot of Tomato

- First discovered in South Africa in 1914
- Caused by four distinct species of **Xanthomonas** (X. euvesicatoria, X. gardneri, X. perforans, and X. vesicatoria)
- As of 2006, *X. perforans* is the dominant species in Florida.
 - Antibiotics was in use 1950s; continuous field use led to bacterial resistance development. Currently only used in transplant production.
 - Current Practices: Pathogen free seed and clean transplants
 - Use of Copper + EBDC (e.g. Mancozeb) (++)
 - As of 2006, all *X. perforans* strains (375+) in Florida are copper-tolerant. **Copper (-)**.
- Other materials: SAR inducer (Actigard; ++), bacteriophages (+/-), biocontrol agents (+/-)
- Limited options necessitates development of new approaches


- Can you tackle copper-tolerance?
 - Nanoparticles vs. micron counterparts: antibacterial activity of metallic compounds is size dependent
 - Smaller particles with larger surface to volume ratios have more activity
 - Interact more closely with microbes
 - Releases more metal ions in solution

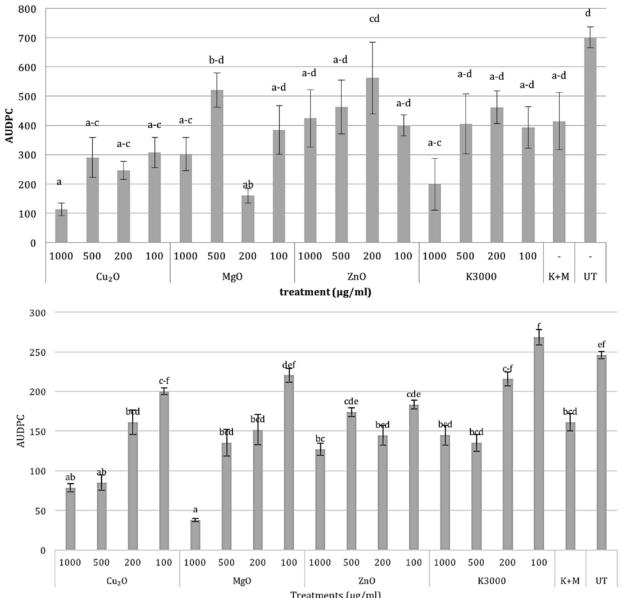
Hypothesis: Reducing the size of some elements to nanosize form will improve antibacterial properties when compared to micron size particles

Credits: Ying-Yu Liao

What is a Nanometer?

Photos courtesy of Ocsoy et al. 2013, Phillips et al. 1980, and Sherwood et al. 2003.

Credits: Amanda Strayer

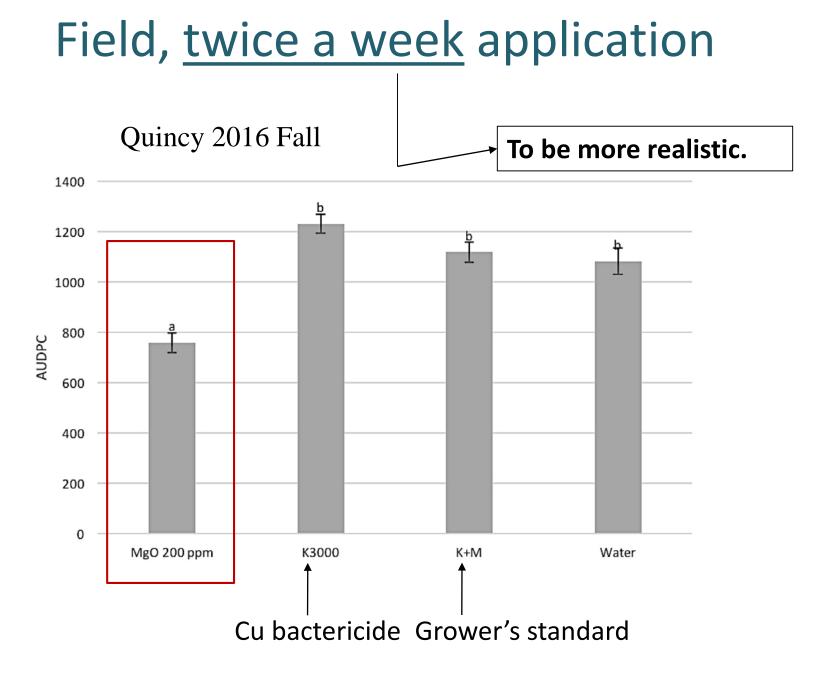

1. In vitro antibacterial activity of metal oxides and

Ag

SNK analysis p=0.05

2. Activity of metal oxides against bacterial spot in Greenhouse

No Phytotoxicity was noted


SNK analysis p=0.05

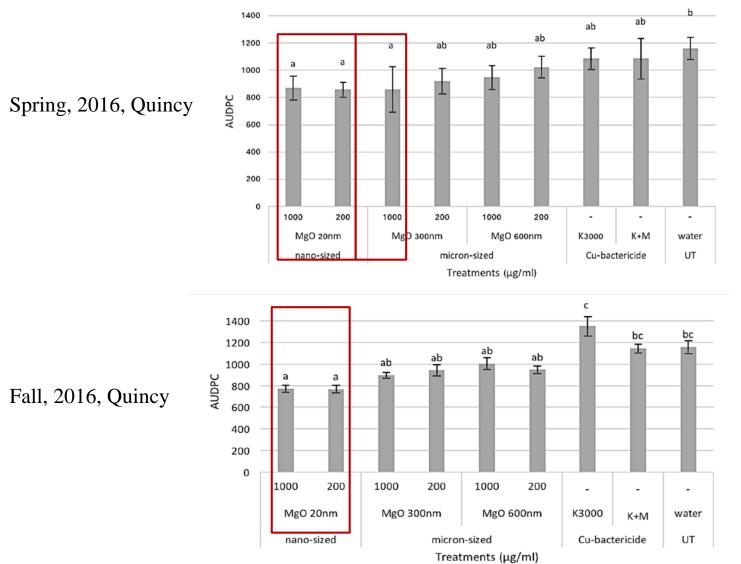
Treatments (µg/ml)

3. Activity of metal oxides against bacterial spot in field

		AUDPC in different location, season		
Treatment	rate (μ g/ml)	Quincy, FL	Wimauma, FL	Quincy, FL
		2015 Fall	2016 Spring	2016 Spring
Nano-Cu ₂ O	1000	987.4 ab	669.6 a	1,063.8 a
Nano-Cu ₂ O	200	930.4 ab	761.4 ab	877.7 a
Nano-MgO	1000	805.0 a	866.4 ab	913.5 a
Nano-MgO	200	836.9 a	580.1 a	853.6 a
Kocide 3000	2100	1,196.4 ab	972.1 ab	1,135.4 ab
Copper-		1,092.9 ab	773.4 ab	1,188.0 ab
mancozeb				
water		1,330.9b	1,136.8 b	1402.1 b

No Phyto-toxicity was noted

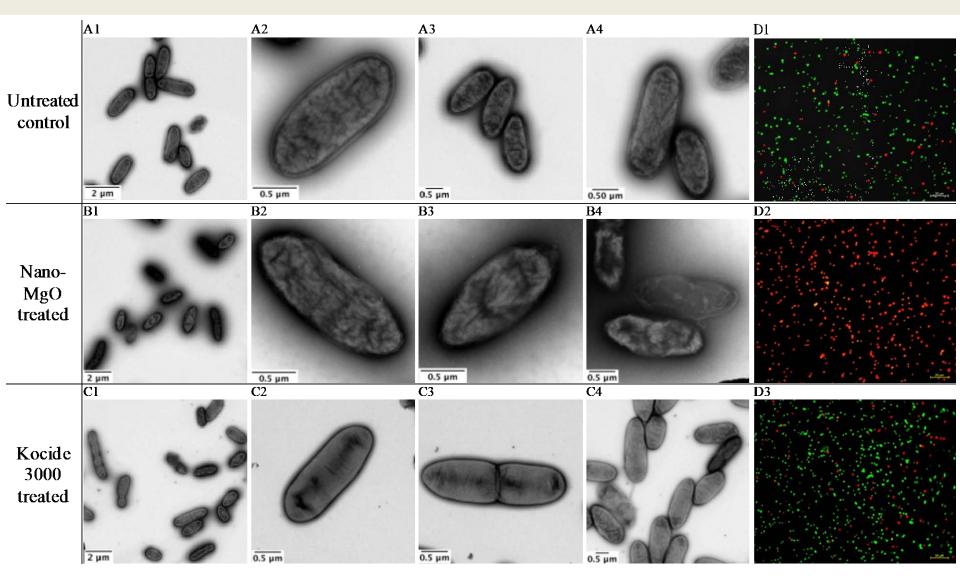
No Phyto-toxicity was noted


4. In vitro antibacterial activity of nano vs micronsize MgO

3.5 b b b а а а а ■ 1 h ■ 4 h а а а а а а 0 1000 100 1000 100 1000 100 1000 100 MgO 20nm MgO 0.6µm Kocide UT MgO 0.3µm Treatments (µg/ml)

Change in Bacterial Population (GEV485) Overtime

SNK analysis p=0.05


5. Nano-Micron MgO against bacterial spot in field

SNK analysis p=0.05

No Phyto-toxicity was noted

6. Mode of action indicated by TEM and Epifluorescence microscopy

Conclusion

- Non-formulated MgO is an effective bactericide against copper-tolerant *X. perforans* in vitro, and effective against bacterial spot in the greenhouse and in the field.
 MgO is a GRAS compound under EPA guidelines.
- Size-dependent activity of MgO in field trials
- No negative yield impact (data not shown)
- No significant elemental accumulation in fruits determined by ICP-MS (data not shown)

(Liao et al. Phytopathology. 2018), Liao et al. In Review

