Genetics of the compact growth habit trait

Tong Geon Lee

UF/Gulf Coast Research and Education Center
Sep. 6, 2017
Compact growth habit in tomatoes?

Tomatoes with a determinate plant type, shortened internodes and spreading characteristics of side branching

Fruits above the ground without the requirement of typical manual practices
Primary goals of plant breeding have aimed at improved traits of commercial value.

Introgression of one or a few genes (traits) into a current elite cultivar (breeding line) is a common plant breeding practice.

Let’s focus on methods for "**introgression**".
Method 1. Crossing

Method 2. Tissue culture

Method 3. Genome engineering technologies
<table>
<thead>
<tr>
<th></th>
<th>Crossing</th>
<th>Editing genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes in genetic background</td>
<td>High (Whole genome)</td>
<td>Low (very precisely)</td>
</tr>
<tr>
<td>The length of time necessary to complete</td>
<td>Years (on breeders)</td>
<td>Yet, requires cycle(s)</td>
</tr>
<tr>
<td>Technical limitation</td>
<td>Not favorable for wild relatives</td>
<td>Currently, inactivation of gene(s)</td>
</tr>
</tbody>
</table>
How new technologies positively impact the breeding paradigm for breeders to introgress the compact growth habit trait?

A better understanding of genetic information about the trait is crucial.
Genetic information \approx gene(s)
A gene or cluster of genes make phenotype(s).

Tomato has approximately 35,000 genes.
~35,000 genes are here
Tomato chromosome view

Genetic information (Gene)

Compact Growth Habit 1
Compact Growth Habit 2
Normal plant 1
Normal plant 2
New sources of the compact growth habit trait?

S. lycopersicum accessions with morphology data

<table>
<thead>
<tr>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
<th>#9</th>
</tr>
</thead>
</table>

Heinz 1706
Our compact growth habit plant
Negative control
Future works

1. Identification of gene(s) mediate the trait

2. Integration of recent advances in genome engineering technologies

3. Provide basic information about genetic diversity
Correction of a pathogenic gene mutation in human embryos

Hong Ma¹*, Nuria Marti-Gutierrez¹*, Sang-Wook Park²*, Jun Wu³*, Yeonmi Lee¹, Keiichiro Suzuki³, Amy Koski¹, Dongmei Ji¹, Tomonari Hayama¹, Riffat Ahmed¹, Hayley Darby¹, Crystal Van Dyken¹, Ying Li¹, Eunju Kang¹, A.-Reum Park², Daesik Kim⁴, Sang-Tae Kim², Jianhui Gong⁵,⁶,⁷,⁸, Ying Gu⁵,⁶,⁷, Xun Xu⁵,⁶,⁷, David Battaglia¹,⁹, Sacha A. Krieg⁹, David M. Lee⁹, Diana H. Wu⁹, Don P. Wolf¹, Stephen B. Heitner¹⁰, Juan Carlos Izpisua Belmonte³, Paula Amato¹,⁹, Jin-Soo Kim²,⁴,⁹, Sanjiv Kaul¹⁰,¹ & Shoukhrat Mitalipov¹,¹⁰§
The common white button mushroom to resist browning by Penn State: Cultivated and sold without oversight by the US Department of Agriculture.

The waxy corn by DuPont Pioneer.
Acknowledgements

Gurleen Kaur

Samuel Hutton
Hutton lab.