ELIMINATING OBSTACLES TO THE ADOPTION OF ANAEROBIC SOIL DISINFESTATION IN FLORIDA

Erin Rosskopf, Nancy Kokalis-Burelle, Jason Hong, and David Butler

ASD: Background

- Developed as alternative to methyl bromide fumigation in Netherlands (Blok et al., 2000; Doug et al., 2004) and Japan (Shinmura & Sakamoto, 1998; Shinmura, 2000, 2004)
- Controls range of soilborne pathogens and nematodes across a range of crops
- In Japan, used by hundreds of farmers in greenhouse production (small scale)
- Now applied to >500A of CA strawberry

Results in a disease suppressive soil for some pathogens*
 *Momma and Kobara, 2011; Mowlick et al., 2013

ASD: Some Target Pests and Crops

Soil-borne pathogens

- Verticillium dahliae^{1,2,4}
- Fusarium oxysporum^{1,2.3}
- Fusarium redolens²
- Ralstonia solanacearum^{2,3}
- Rhizoctonia solani¹
- Sclerotium rolsfii³

Nematodes

- *Meloidogyne incognita*^{1,3}
- Pratylenchus fallax²
- Weeds
- Nutsedge³
- Grasses³

Crops tested

- Onion²
- Tomatoes^{2,3}
- Strawberries^{2,3,4}
- Eggplant^{2, 3}
- Spinach²
- Peppers³
- Cut flowers³
- Cucurbits³

Studies: ¹Dutch; ²Japanese; ³Florida; ⁴ California

ASD: Three Steps

- 1. Incorporate organic material
 - Provides C source for soil microbes
- 2. Irrigate to saturation
 - > Water-filled pore space
- 3. Cover with oxygen impermeable tarp
 - Create anaerobic conditions and stimulate anaerobic decomposition of incorporated organic material

ASD: Mechanisms

- Accumulation of toxic products from anaerobic decomposition (e.g. organic acids, volatiles)
- Biological control by facultative anaerobic microorganisms
- Low pH
- Lack of oxygen
- Combination of all of these

Potential for Florida

□ Florida vegetable production systems

- Raised-bed, plasticulture
- Sandy soils
- Double crops
- Summer fallow period
- Solarization potential
- Crops tested: tomato, pepper, eggplant, cucurbits

Flat production-cut flowers

Methods-First experiments*

- Complete factorial (split-split plot)
 - Initial irrigation (none, 2", 4")
 - Partially-composted poultry litter (unamended vs. amended)
 - Molasses (unamended vs. amended)
- Treatments solarized during treatment period
- Untreated and MeBr (200 lbs acre⁻¹, 67:33) controls included, covered with metalized plastic film (not solarized)

- Poultry litter

 application
 ~ 200 lbs N acre⁻¹
 available to pepper crop

 Application

 concentrated in bed
 - 0.9-m bed width
 - 1.5-m on center
 - Tilled into the top 8"

Molasses application

- 4.5 t acre⁻¹ (wet basis)
- Application concentrated on bed area
- ~ 50% total sugars
- ~ 5 gallons undiluted molasses per 150 ft² of bed
- Diluted 1:1 with water and sprayed on beds to facilitate application
- Beds covered with clear plastic and irrigated via drip irrigation

ASD treatment in late Aug./early Sept. 2008 & 2009

Planting

- Following 3-week ASD treatment, solarization plastic covered with metalized film
- Bell peppers (cv. 'PS 8302') planted in September, followed by eggplant (cv. 'Night Shadow') in February
- Fertigation in non-litter treatments, and to supplement double crop
- Yield, plant nutrition, plant growth, and vigor data collected throughout study

Soil properties

- Redox potential (Eh) & soil temperature monitored continuously during treatment
 - Eh: Pt combination electrodes, Ag/AgCl reference
- Soil pH, inorganic and total N, extractable P, and total C
 - Prior to ASD treatment
 - Post-ASD treatment
 - Bell Pepper mid-season and harvest
 - Eggplant planting and harvest

Solarization

Daily maximum temperatures at 15cm depth

- ~45°C (115°F) with solarization
- < 33°C (~90°F) under reflective silver plastics
- Ambient high ~ 90°F
- Mesophilic soil organisms damage threshold beginning ~39°C (102°F)

Impact on F. oxysporum inoculum

- No significant impact of applied poultry litter or irrigation
- Mortality of *F. oxysporum* equal to
 MeBr when molasses
 applied
- All treatments
 improved control of *F. oxysporum* compared
 to UTC

Impact on Sclerotium rolfsii inoculum

- Germination of introduced *S. rolfsii* sclerotia equal to MeBr for treatments with molasses and/or litter
- Similar results in microplot studies of irrigation rates and litter application
 - 41% germination without applied litter
 - 5% germination with applied litter

Impact on plant-parasitic nematodes

- *M. incognita* populations
 reduced by
 molasses and/or
 litter amendment
- Initial irrigation important

Impact on weeds

- With 2" or 4" initial irrigation, weed control in planting holes (mostly grasses) improved by litter and/or molasses
- All treatments were equal to the MeBr standard and less than UTC

Strawberry Pathogen Control*

Fusarium inoculum survival

Macrophomina inoculum survival

*Rosskopf et al., 2014. Acta Hort 1041:

Obstacles to Adoption

Availability of Carbon Sources Locally-sourced waste products Cover crops Composted Broiler Litter and Food Safety Salmonella Testing Alternative Nitrogen Inputs Solarization "Requirement" Plastic Testing Nitrogen Management Nitrate leaching and GHG emissions

C source amendments and rates

California

- Rice bran (4.5 to 9 t/acre; ~5.5 to 11 mg C g⁻¹ soil)
- Mustard cake, mustard seed meal, ethanol
- Florida
 - Liquid molasses (3.5 t dry matter/acre, ~4.5 mg C g⁻¹ soil in raised bed)
 - Cover crop residue (variable)
- Tennessee
 - Dry molasses (~1.3 to 2.5 t/acre, 1 to 2 mg C g⁻¹ soil)
 - Cover crop residue (variable, 1 to 4.2 mg C g⁻¹ soil)
 - Future work: wheat bran

All carbon sources effective.

Different C sources effectively reduce *V. dahliae* microsclerotia – pot studies*

Controlled environment studies

Pathogens/ nematodes

- Fusarium oxysporum
- Southern root-knot nematode
- Soil temperatures
 - **15** C to 25 C
 - **2**5 C to 35 C
 - **35** C to 45 C

C-source treatments
0 mg C g⁻¹ soil
1 mg C g⁻¹ soil
2 mg C g⁻¹ soil
3 mg C g⁻¹ soil
4 mg C g⁻¹ soil

Mixtures of starch and glucose

Cover crops as carbon sources

- Warm-season cover crops fit well into existing production systems
- □ Greenhouse study
 - 2 legumes: cowpea, sunn hemp
 - 2 grasses: pearl millet, sorghumsudangrass
 - Cowpea mixed with each grass
 - Molasses and untreated controls
 - Irrigated to saturation and covered with plastic

Cover Crops as Carbon Inputs*

	Bioma <i>ss</i> rate†	Total carb on	Total nitrogen	C:N ratio
	(Mg ha')	(lig ha')	(lg ha')	
	Trial 1			
Cowpea	3.1	1,183	64.0	18.5
Sum hemp	2.1	821	35.0	23.5
Pearl millet	5.8	2,257	69.2	32.6
Sorghum-sudangrass	5.4	2,236	38.6	57.9
Cowpea + pearl millet	3.4	1,395	90.4	15.4
Cowpea + sorghum-sudangrass	4.5	1,818	60.3	30.1
M olasses	14.6	5,158	146.6	35.2
	Trial 2			
Cowpea	1.1	435	28.9	15.1
Sum hemp	1.1	443	30.1	14.7
Pearl nillet	1.9	796	21.2	37.5
Sorghum-sudangrass	1.5	661	15.5	42.8
Cowpea + pearl millet	1.5	606	21.1	28.7
Cowpea + sorghum-sudangrass	1.2	521	29.8	17.5
Molasses	14.6	5,158	146.6	35.2

†dry matter

*Butler et al., 2012. Plant Soil 355:149-165

Cover Crops as Carbon Inputs*

*Butler et al., 2012. Plant Soil 355:149-165

Impact on F. oxysporum inoculum

All carbon sources effective.

ASD and Food Safety

Composted Broiler Litter

Salmonella testing

Effective composting

 (Guan et al., 2006. Poultry Science 86:610-613.; review Chen and Jiang, 2014. Agriculture 4:1-29)

Serological and Molecular Techniques

Enrichment, selective plating, PCR with genus-specific primers

CBL, soil pre and post, and green and red tomato fruit

No evidence of Salmonella, but other potential human pathogens were not tested.

ASD and Food Safety

□ Alternative Nitrogen Inputs

- 1) "standard" ASD-CBL, 2", molasses
- 2) Chitin/CBL (ROOTGUARD®)ASD
- 3) Pelleted litter (MicroSTART60)ASD
- Mustard (MustGro[™])
- 5) Soybean meal ASD
- 6) Corn gluten ASD
- 7) Mustard alone
- 8) Algal compost
- 9) Untreated-irrigation only

All solarized, all with irrigation

Alternative N inputs

tomato yield

N inputs

UTC-solarization, water, and fertigation All treatments "balanced for N"

ASD and Plastic

Previous work assumed the need for combining with solarization for heavy weed issues-requires two plastic laying events

Impact of Plastics on Weed Control

Ongoing work

Mechanisms of disease suppression Significant shifts in microbial communities

Significant shifts in microbial communities

Non-metric multi-dimensional scaling (MDS) plot derived from SIMPR values comparing the similarity of the resulting bacterial populations from soil samples taken from six fields treated with anaerobic soil disinfestation (ASD) detected by length heterogeneity pcr. (LH-pcr).

Ongoing work-Areawide Project

- Mechanisms of disease suppression
 - Introduction of pathogens post-treatment-Phytophthora capsici, Fusarium oxysporum f.sp. lycopersici
 - Shifts in native populations or additions with amendments
- Addressing nitrogen issues-leaching and emissions
- Economics

□ Logistics-Scale

Medium-scale

Small-scale

STILL medium-scale

1 Acre example:

<u>ASD</u>

9T Broiler Litter 1500 gal molasses 2 drip lines 2X plastic (US\$1900)

<u>3-Way*</u>

5-10 gal 1,3-D 80-120 lb chloropicrin 30-45 gal metam sodium (@US\$1090-1400)

*Courtesy of Dan Chellemi

Collaborators

- Joji Muramoto-Soil science, U.C. Santa Cruz
- Carol Shennan-Agroecology, U.C. Santa Cruz
- Joe Albano-Plant nutrition, formerly with USDA-ARS, Fort Pierce
- Greg McCollum-Fruit quality, USDA-ARS, Fort Pierce
- Kendall Martin-Soil microbiology, William Patterson Univ., Wayne, NJ
- Areawide Team-Monica Ozores-Hampton, Xin Zhao, Zhifeng Gao, John Thomas, Mickie Swisher & Kelly Monaghan

Acknowledgements

- Partial funding provided by USDA, NIFA Methyl Bromide Transitions
- Kate Rotindo, Bernardette Stange, Melissa Edgerly, Wes Schonborn, Pragna Patel, Greg Hess, Shardy Sauvuer, Jackie Markle
- Randy Driggers, Gene Swearingen, Don Beauchaine, Steve Mayo, Bill Crawford, Chris Lasser, Loretta Myers, Marcus Martinez
- Nancy Roe, John Holzinger, Florida Ag Research

Questions?

