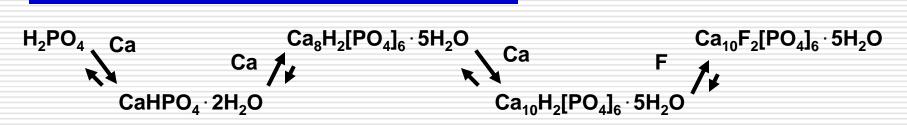
#### Results of field studies on lowering pH of alkaline and calcareous soils with sulfur

#### Kelly Morgan, Gene McAvoy and Shinjiro Sato

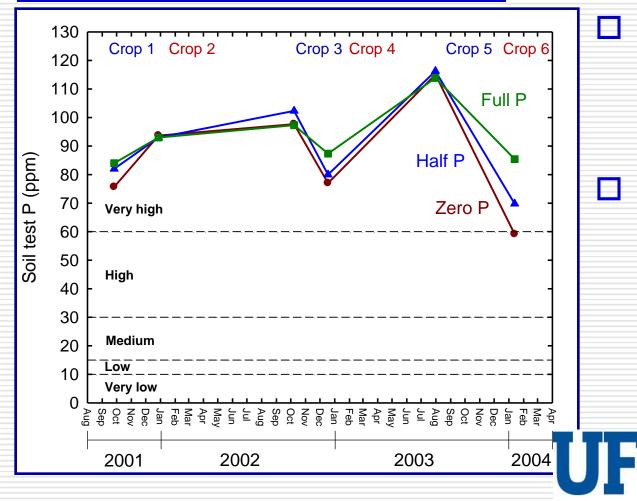



# Soil Test P

- Soil test results are extractable nutrients
  - ✓ An index of available nutrients
  - ✓ Not a measure of plant-available nutrients
  - ✓ Not be used to calculate available nutrients
- Extractants used in soil test
  - ✓ Water extracts only nutrient in solution (not available)
  - ✓ Mehlich 1 and 3 best results on soils below pH 7.2
  - ✓ Mehlich 3 can be used on higher pH soils
  - Bray 1 can only be used for soil with pH below 7.4 (not suitable for calcareous soils)
  - ✓ Olsen should only be used for calcareous soils



# Soil Phosphorus




- Reduced Availability (pH = 7.0 to 8.3)
- "Fixed" by soil calcium
- Available to plant for short period of time
- Accumulates over time in-soluble forms

- Soil test measures "extractable" P and not "total" P
- "Extractable" P may contain P not available to the plant



#### Change in Soil Test P Over Time



Soil test P can remain high for years even when no P is added Indicting that more "available" P exists in the soil to be "extracted"

UNIVERSITY of

**IFAS** 

## Current Soil P Index Study



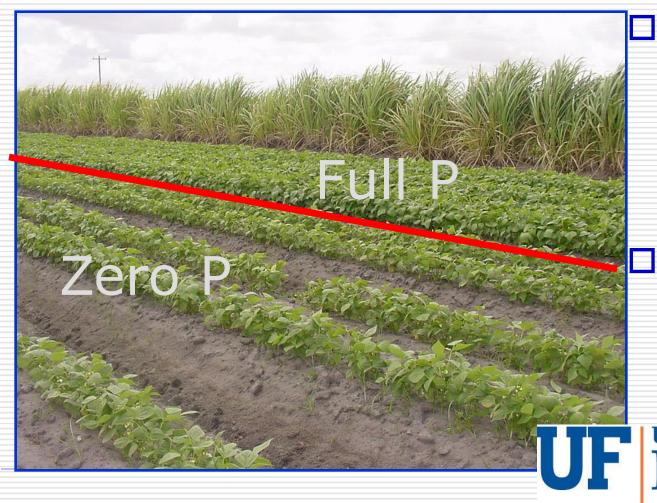
 Conducted on four farms and five cooperators
Duration = Five years
Crops = tomato, peppers, and green beans




# Soil Tests Results

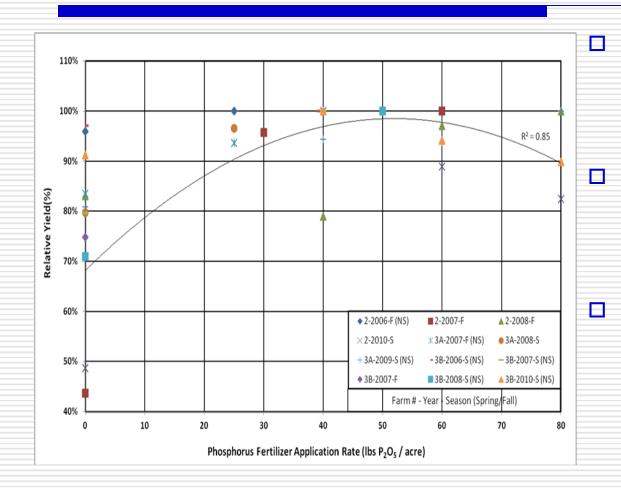
| Tomatoes        | Soil P<br>(ppm) | Soil Ca<br>(ppm) | Soil pH | Most plots have<br>lower P than<br>previous study |
|-----------------|-----------------|------------------|---------|---------------------------------------------------|
|                 | 101             | 1045             | 6.0     | All soil P values in<br>the high to very          |
| Farm 1          | 101             | 1265             | 6.8     | high P index                                      |
| Farm 3          | 64              | 1117             | 7.3     | □ Soil Ca very high                               |
| Farm 4          | 32              | 1299             | 7.0     | (>400) in all plots                               |
|                 |                 |                  |         | Higher P values<br>associated with                |
| Green Beans     |                 |                  |         | lower pH (BOLD)                                   |
| Farm 2          | 40              | 1778             | 7.6     | suggesting greater<br>P availability              |
| Farm 3 (fall)   | 95              | 783              | 6.8     |                                                   |
| Farm 3 (spring) | 41              | 1500             | 7.2     | UNIVERSITY of                                     |
| -               |                 |                  |         | <b>UF UNIVERSITY</b> of <b>FLORIDA</b>            |

IFAS


### Tomatoes – Yield



No significant difference in fruit yields by size Trend for higher yields of medium (6x7) and large (6x6) fruit at first harvest with lower fertilizer P Trends were higher yield of large (6x6) fruit with increased fertilizer P



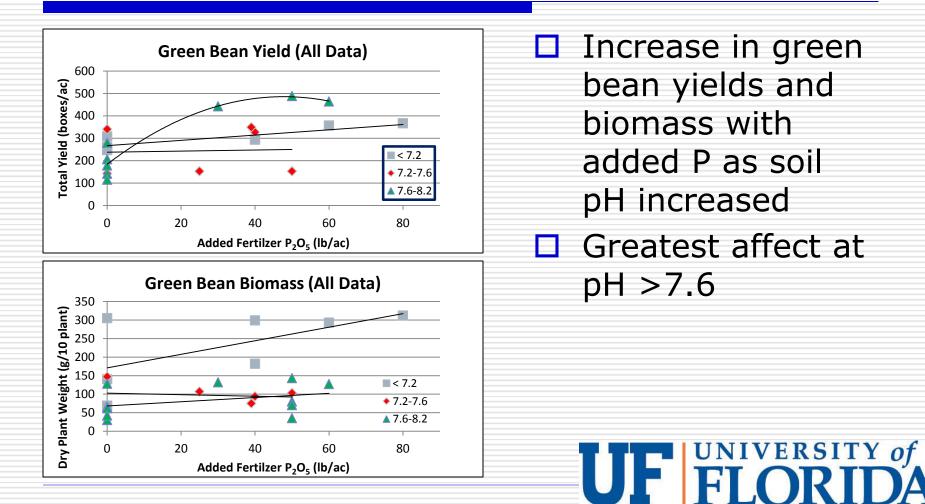

### Effect of P Application on Green Bean Growth



Dramatic reduction in plant growth with reduced P No difference in leaf P concen-**F FLORIDA** FAS

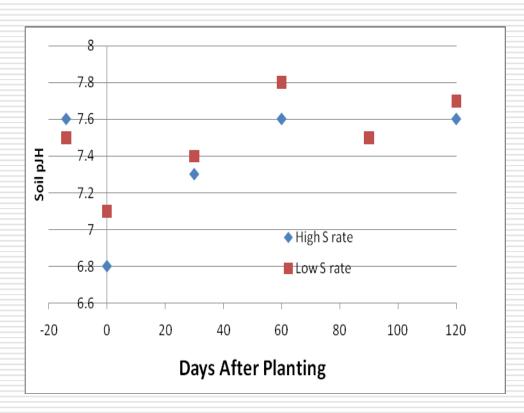
### Green Bean – Yield




- 3 of 4 crops had significantly greater biomass at 30 days with increased fertilizer P
- 4 of 4 crops had significantly greater biomass at 60 days with increased fertilizer P
- 4 of 4 crops had significantly greater yield of 4 to 6 inch long beans and total yield with increased fertilizer P

UF FLORIDA

**IFAS** 


# Green Bean Response to Soil

pН



FAS

# Soil pH Reduction With Sulfur



- At sulfur application of 500 and 1000 pounds per acre, pH returns to beginning levels within 60 days.
- plant growth and leaf P concentration increased with reduction of soil pH at 30 days but not at 60 days after planting
- No significant affect of residual soil P on green bean yield UNIVERSITY of

FA

## Tomato Response to Soil pH

| Fertilizer<br>P (lb ac <sup>-1</sup> ) | Biomass dry weight (oz/plant)              |       |       | Fruit Fresh weight (lb/plant) |       |       | Leaf P<br>(%) |       |       |       |  |  |  |  |
|----------------------------------------|--------------------------------------------|-------|-------|-------------------------------|-------|-------|---------------|-------|-------|-------|--|--|--|--|
|                                        | Elemental S Applied (lb ac <sup>-1</sup> ) |       |       |                               |       |       |               |       |       |       |  |  |  |  |
|                                        | 0                                          | 233   | 467   | 0                             | 233   | 467   | 0             | 233   | 467   |       |  |  |  |  |
|                                        | 30 Days after planting                     |       |       |                               |       |       |               |       |       |       |  |  |  |  |
|                                        | 0                                          | 0.47  | 0.41  | 0.38                          | _Z    | -     | -             | 0.340 | 0.348 | 0.333 |  |  |  |  |
|                                        | 24                                         | 0.43  | 0.44  | 0.48                          | -     | -     | -             | 0.339 | 0.293 | 0.348 |  |  |  |  |
|                                        | 37                                         | 0.49  | 0.55  | 0.52                          | -     | -     | -             | 0.347 | 0.349 | 0.342 |  |  |  |  |
|                                        | 49                                         | 0.51  | 0.53  | 0.51                          | -     | -     | -             | 0.351 | 0.359 | 0.345 |  |  |  |  |
| Sig                                    | gnificance (p)                             | 0.321 | 0.056 | 0.012                         | -     | _     | -             | 0.491 | 0.564 | 0.605 |  |  |  |  |
|                                        | 60 Days after planting                     |       |       |                               |       |       |               |       |       |       |  |  |  |  |
|                                        | 0                                          | 7.63  | 8.03  | 7.24                          | 2.67  | 4.49  | 5.67          | 0.350 | 0.346 | 0.345 |  |  |  |  |
|                                        | 24                                         | 8.21  | 8.15  | 7.36                          | 2.73  | 4.13  | 6.48          | 0.355 | 0.357 | 0.338 |  |  |  |  |
|                                        | 37                                         | 7.20  | 8.13  | 7.97                          | 2.93  | 8.91  | 7.49          | 0.297 | 0.399 | 0.345 |  |  |  |  |
|                                        | 49                                         | 6.78  | 8.31  | 8.13                          | 2.45  | 7.90  | 7.29          | 0.353 | 0.355 | 0.350 |  |  |  |  |
| Sig                                    | gnificance (p)                             | 0.309 | 0.563 | 0.509                         | 0.522 | 0.753 | 0.178         | 0.436 | 0.543 | 0.268 |  |  |  |  |
|                                        | 120 Days after planting                    |       |       |                               |       |       |               |       |       |       |  |  |  |  |
|                                        | 0                                          | 11.06 | 10.15 | 11.62                         | 17.6  | 18.4  | 21.0          | 0.309 | 0.435 | 0.300 |  |  |  |  |
|                                        | 24                                         | 10.97 | 11.55 | 12.85                         | 17.4  | 20.8  | 23.5          | 0.300 | 0.360 | 0.293 |  |  |  |  |
|                                        | 37                                         | 11.33 | 11.70 | 12.97                         | 19.3  | 22.5  | 25.9          | 0.383 | 0.231 | 0.334 |  |  |  |  |
|                                        | 49                                         | 12.47 | 11.41 | 13.36                         | 24.7  | 16.4  | 27.7          | 0.294 | 0.332 | 0.300 |  |  |  |  |
| Sig                                    | gnificance (p)                             | 0.333 | 0.653 | 0.534                         | 0.563 | 0.834 | 0.754         | 0.561 | 0.758 | 0.790 |  |  |  |  |

## Summary

- Importance of P as a primary nutrient is related to P-soil interaction.
- P soil tests suggest that P can accumulate and remain available for years.
- Under S. Florida soil conditions (high Ca and high pH) P availability varies by crop.
- Effect of soil pH moderation on crop growth is limited to the time that pH remains lowered resulting in no significant affect on final yield
- Soil tests should be <u>counted on</u> to guide P fertilization. New Index for high Ca and high pH soils need to be evaluated for S. Florida



