# Effectiveness of Tomato and Watermelon Water and Nutrient BMPs

Sanjay Shukla
Gregory Hendricks
Kent Kushman
Thomas Obreza
Gene McAvoy



## Background

- Federal Clean Water Act (FCWA),1972
- Total Maximum Daily Loads (TMDLs)
  - Best Management Practices (BMPs)
- FDACS Vegetable and Row Crop BMP Manual
- Numerous BMPs listed but few have been verified
- Irrigation and nutrient management BMPs
  - Soil moisture based irrigation
  - Using recommended fertilizer
- Majority of tomato and watermelon growers in south Florida growers use seepage irrigation
- Need to evaluate the irrigation and nutrient BMPs

## Best Management Practices (BMP)

"BMPs are a practice or combination of practices determined by the coordinating agencies, based on research, field-testing, and expert review, to be the most effective and **practicable** on-location means, including **economic and technological** considerations, for **improving water quality** in agricultural and urban discharges."

Florida Department of Agriculture and Consumer Services (FDACS)











Majority of South Florida Vegetable Crop Produced with Seepage Irrigation

# Typical Studies Related to BMP

- Typical BMP studies
  - Evaluate crop yield or water quality,
  - Conducted on small scale plots
  - Confounding water quality effects due to groundwater mixing
- Lack of Systems Approach
  - Yield
  - Water use and quality
  - Economics

# Objective

Evaluate the effectiveness of irrigation and nutrient BMPs for seepage irrigated tomatowatermelon production system for yield, water use, water quality, and farm income

# Study Design

- Three year SWFREC Immokalee, (2004-2006)
- Field Area 3.6 acres
  - •Six 0.6 ac fields
- >Crops
  - Watermelon (2 Spring seasons)
  - Tomato (4 seasons)
- Hydrologically Isolated plots

Crop beds

34 m

A horizon

Drain Tile

Spodic

Bh horizon

#### Three treatments:

- Industry fertilizer-water input (High Rate, HR) Grower Survey
- BMP fertilizer-water input (BMP Recommended Rate, RR)
- BMP input with sub-surface drip (RR-SD) Survey

#### **Irrigation and Nutrient Treatments**

|               | Watermelon |               |              | Tomato     |               |               |
|---------------|------------|---------------|--------------|------------|---------------|---------------|
| Treatment     | N<br>lb/ac | P2O5<br>lb/ac | K2O<br>lb/ac | N<br>lb/ac | P2O5<br>lb/ac | K2O<br>lb/ac  |
| HR            | 265        | 170           | 459          | 373        | 162           | 673           |
| RR &<br>RR-SD | 150        | Soil<br>Test  | Soil<br>Test | 200        | Soil<br>Test  | Soil<br>Tests |

HR Water Management – 18% soil moisture content from surveyed farms HR based on vegetable grower survey in South Florida (Shukla et al. 2004)

#### Measurements

- Fruit yield
  - 2-3 harvests
- Plant nutrients (N and P)
  - Leaf tissue
  - Whole plant
- Hydrology
  - Water use
  - Soil moisture
  - Water table depth
- Soil and Water quality (NO<sub>3</sub>, TN, TP)
  - Soil (0-10,10-20,20-30,30-40 cm)
  - Shallow and deep groundwater (N and P)















# Results

#### Rainfall



Year/Crop season

- Average annual rainfall ≈ 54 inch
- Rainfall from Hurricane Wilma (October 24th 2005) ≈ 8 inch.



#### **Tomato Yield**

|           |           |                   | // <del>**************</del> |           |                   |
|-----------|-----------|-------------------|------------------------------|-----------|-------------------|
|           | Treatment | Yield<br>(box/ac) |                              | Treatment | Yield<br>(box/ac) |
| Fall 2004 |           |                   | Spring 2006                  |           |                   |
|           | HR        | 1,885             |                              | HR        | 3,224             |
|           | RR        | 1,815             |                              | RR        | 2,635             |
|           | RR-SD     | 1,946             |                              | RR-SD     | 2,592             |
| Fall 2005 |           |                   | Fall 2006                    |           |                   |
|           | HR        | 659               |                              | HR        | 2,449             |
|           | RR        | 853               |                              | RR        | 2,089             |
|           | RR-SD     | 849               |                              | RR-SD     | 2,088             |
|           |           |                   |                              |           |                   |

No statistical difference detected

#### Watermelon Yield

| Year         | Treatment | Yield            |                   |  |
|--------------|-----------|------------------|-------------------|--|
| rear         |           | Diploid (cwt/ac) | Triploid (cwt/ac) |  |
| 2004         | HR        | 758a             | 444a              |  |
|              | RR        | 538a             | 261a              |  |
|              | RR-SD     | 475a             | 349a              |  |
| Significance |           |                  |                   |  |
|              | P-value   | 0.261            | 0.336             |  |
| 2005         | HR        |                  | 345a              |  |
|              | RR        |                  | 193b              |  |
|              | RR-SD     |                  | 214b              |  |
| Significance |           |                  |                   |  |
|              | P-value   |                  | 0.031             |  |

Treatment effect detected for yield during 2005

#### Watermelon

#### Tissue and Petiole Sap – Spring 2005



Leaching rainfall event: 3 in. over 3 days or 4 in. over 7 days

## Water Table Depth and Soil Moisture



#### **Average Water Use**



System: HR - 74 in, RR - 68 in, RR-SD - 37 in

# Soil and Groundwater Quality

#### Soil N (Tomato)

| Nutrient           | Treatment & Significance | Root Zone<br>(0-8 in) | Below Root Zone<br>(8-16 in) |
|--------------------|--------------------------|-----------------------|------------------------------|
| NO <sub>3</sub> -N | HR                       | 121                   | 23                           |
| (mg/kg)            | RR                       | 63                    | 14                           |
|                    | P - value                | < 0.05                | 0.07                         |
| TN                 | HR                       | 519                   | 269                          |
| (mg/kg)            | RR                       | 363                   | 230                          |
|                    | P - value                | < 0.05                | 0.22                         |

Treatment effect (P<0.05) occurred mostly within the crop bed

#### Groundwater N



#### **Groundwater Total P**



## Shallow Groundwater N and P



Treatment effect detected (P< 0.05) for shallow groundwater N and P

# Deep Groundwater N and P



No treatment effect detected (P< 0.05) for deep groundwater N and P

#### So is RR a BMP?

Long-term study

## Summary

- No statistical difference in tomato yield between Industry and BMP
- Under "average" rainfall conditions, no statistical difference in watermelon yield between Industry and BMP
- Wetter conditions during the spring season may reduce the watermelon yield. Further research is needed to develop nutrient management strategies (especially K) for wetter conditions.

## Summary

- The BMPs reduced the total N and P concentrations in groundwater by 50 and 33%, respectively compared to the Industry.
- The BMPs reduced the water use by 7 % (seepage, RR) and 50% (sub-drip, RR-SD)
- Long-term studies needed to detect the differences in tomato yield, if present.
- Reduced N and P leaching to the groundwater found in this study is likely to reduce the N and P loads.
- First study to quantify yield, economic, and water quality effects of BMPs, more needed

# Acknowledgements

Southwest Florida Vegetable Growers Research Fund Vegetable Growers





# Rainfall-Spring 2005



-Rainfall spring 2005 -Leaching Rainfall

\*Beds preparation and transplant-2/21/05

Seasonal average = 11.1 in.

Rainfall during spring 2005 (18.2 in) was 3 times greater than spring 2004 (5.4 in)



#### Summary

- No yield differences for tomato yield
- No yield differences for watermelon produced under average weather conditions
- N-Leaching higher and more frequent in the HR treatment
- Higher concentrations of groundwater N and P are maintained above the spodic layer of the HR treatment
- No treatment effect detected in groundwater N and P below the spodic layer

#### Conclusions

- RR-SD treatment reduced water use by more the 50% compared to HR and RR treatments
- RR and RR-SD treatments is a BMP under average weather conditions
- First ever study to show a link between recommended fertilizer-water inputs and improved groundwater quality with no effect on yield

# Study Implications

- First ever study to show a link between recommended fertilizer-water inputs and improved groundwater quality with no effect on yield.
- Growers maybe more receptive in accepting and adopting recommended fertilizer-water inputs for vegetable production in south west Florida.

# Background

Cash value\* – \$140,392,000

• Yield\* - 330 cwt/ac.

• Harvested acreage\* – 26,100 ac.

- Plastic mulched beds
- Crop rotation
  - Watermelon-Spring
  - Tomato or pepper-Fall
- Florida irrigation systems (vegetable crops)
  - Sprinkler(69,951 ac.)†
  - Micro (21,025 ac.)†
  - Flood (118,949 ac.)†





Image source: IPM center (www.ipmcenters.org)

# Drip vs. Seepage Irrigation

Drip

Back- wash Valve Pressure Gauge

Screen
Filter

Sand Seprator
Hydro-Cyclone

Well
Water Source

NRV

By Pass valve

Pump
Well
Water Source

Flush Valve

End Stop

Polytube / Lateral
Flush Valve

Jain Irrigation Systems Life.

Seepage



Image source: www.jains.com/irrigation

 Water and fertilizer (Can apply as needed)

Water (All fertilizer -pre-plant)

## Recommended BMPs

- Nutrient management
  - Optimum N rates
  - Soil test based P and K applications
  - Supplemental (N and K)
    - Hand/Liquid fertilizer injection wheel
    - Extended harvest season
    - Open field leaching Rainfall-3" in 3 days, 4" in 7 days
- Water management
  - Soil moisture-based (Seepage and Drip)
  - ET-based (Drip)



## Current Practice (grower survey)

- Nutrient Input
  - Likely greater than recommended
  - Applied as insurance to ensure max yield
    - Multiple harvests
    - Healthier plants
  - Limited use of soil test based P and K
- Water management
  - Moisture content above field capacity
  - Limited use of soil moisture or ET-based irrigation management



# Watermelon Grower Survey

| South Florida* | N (lbs/ac) | P <sub>2</sub> O <sub>5</sub> (lbs/ac) | K <sub>2</sub> O (lbs/ac) |
|----------------|------------|----------------------------------------|---------------------------|
| Average        | 199 (150)  | 128 (120-L)                            | 347 (120-L)               |
| Min            | 138        | 83                                     | 220                       |
| Max            | 266        | 220                                    | 501                       |

L = soil testing low nutrient, \*(Shukla et. al., 2004)

- Growers apprehensive about nutrient recommendations
- Data needed to evaluate if water-nutrient BMPs work wrt yield and water quality
- Focus on a specific nutrient BMP may detract growers from other BMPs
- When a management practice becomes a **BMP**?

#### **BMP** Essentials

- Improve water quality in agricultural discharges
- Include economic and technological considerations

#### BMP Effectiveness study must address:

- Water quality
- Crop yield
- Farm economics





# Watermelon-Tomato BMP Study\*

- Watermelon-Tomato rotations
- Traditional cultural practices
- Grower average (HR) Vs.
   recommended (RR)
   nutrient-water rates
- Plots hydrologically separated- reduces uncertainty groundwater quality analysis.
- Crop yield and groundwater quality evaluated





(Shukla and Hendricks, 2009)

### Results

- Yield Analysis
- Tissue Analysis
- Economic Analysis
- Groundwater Quality Analysis
- Water Use







Source: infinitibusinesssolution.com

### Watermelon Yield

|              |           | ^^^^^^^^^^^^^^^^^^^^^^^    |
|--------------|-----------|----------------------------|
| Year         | Treatment | Triploid<br>Yield(cwt/ac.) |
| 2004         | HR        | 444                        |
|              | RR        | 261                        |
|              | RR-S      | 349                        |
| Significance |           |                            |
|              | р         | 0.336                      |
| 2005         | HR        | 345                        |
|              | RR        | 193                        |
|              | RR-S      | 214                        |
| Significar   | nce       |                            |
|              | р         | 0.031                      |





• Yield reduction occurred during 2005. Why?

# Leaf Tissue Analysis



- •Watermelon plants in RR treatments deficient in Potassium (and N?)
- Potassium deficiency likely due to leaching rainfall event
- •Economic impact?

Solid line - Seepage
Hendricks, Shukla, Cushman, Obreza. Roka, McAvoy,
Dash lines- RR and RR-SD and Portier 2007

## Economic Analysis (Year 2005)

- Added yield from HR
  - I. Low 130 cwt/acre
  - II. High 150 cwt/acre
- Average season prices for triploids
  - a. \$8.40/cwt in 2004 to
  - b. \$15.50/cwt in 2005
- HR Return Gain (low yield gain and market price) = \$590/acre
- HR Return Gain (high yield gain and market price) = \$1764/acre

**Environmental Impact?** 

Hendricks et al (2009)

# Groundwater Quality (N Conc<sup>n</sup>)

Avg TKN, NH<sub>3</sub>-N and NOx-N within **RR and HR treatments** 



- Integrated systems approach used to analyze groundwater quality
- •watermelon and tomato rotation

# Soil and Groundwater Quality





- Soil Solution N Conc<sup>n</sup>
   HR > RR and RR-SD
- Improved groundwater quality with RR and RR-SD
- Quality of deep groundwater unchanged

### Shallow Groundwater P (above spodic)



Average TP Conc. in HR 47% higher than average TP Conc. in RR

### Water Use

 Reduced average water use for RR and RR-SD compared to HR



# So, was it a BMP?

Water-nutrient BMP status for watermelon Yield

- RRs worked under "average" weather conditions
- RRs reduced the yield and profit under "wet" conditions

RRs improved water quality-groundwater (and surface water)





# **Drip Irrigation**

- ET-based water management for watermelon
- Crop Coefficient (Kc)
  - o-28 DAT o.57
  - 29-56 DAT 0.89
  - 57-84 DAT 0.76
    - Shukla et al (2008)



### Future Research Issues

- The BMP evaluation study needs to be continued for more growing seasons to better evaluate BMP effectiveness under variable weather and economic condition
- Development of water table management tools
  - Water table vs rainfall relationship for active water table management for irrigation and drainage
  - Linking rainfall predictions with water and nutrient input

### Future Research Issues

- Leaching rainfall
  - evaluation of supplemental fertilizer
  - frequent "normal" rainfall vs. "leaching rainfall"
    - water table change = 16 x rain (Jaber and Shukla, 2006)
- Comparison of drip and seepage production systems
  - water quality, yield, and economic
  - variable soil conditions
- Drip irrigation management
  - not managed properly, can have higher leaching than seepage
  - ET-based using recently developed Kc
  - water quality effectiveness
- How to minimize leaching after removing plastic
  - considerable N-P-K left after harvest

### Measurements