Comparison of Potassium Sources and Rates for Tomato Production in Florida

Bielinski M. Santos Gulf Coast REC

Essential Plant Nutrients

 Potassium (K) is one of the two mostabsorbed nutrients for tomato production.

• Essential: Osmotic potential and fruit quality.

Preplant:

- Sulfate of potash (SOP; 0-0-50 + 17S).
- Muriate of potash (MOP; 0-0-60).
- Potassium nitrate (13-0-45).
- Drip:
 - Potassium nitrate.
 - Potassium thiosulfate.

Historical K Fertilizer Prices

Rates

- No longer "cheap insurance".
- 400 to 500 lb/acre (2006).
 - \$70 to 85/acre (2006).
 - \$120 to 145/acre (2010).
- 275 to 350 lb/acre (2010).
 - \$100 to 125/acre (2012).

Dry Fertilizer Placement

Seepage irrigation:

• "Cold mix": Bottom of the bed.

• 25% to 35% of K rate.

• "Hot mix": 1 or 2 bands.

• 65% to 75% of K rate.

Current Situation

 Many tomato growers not transitioning to drip irrigation.

• Cheaper fertilizer blends are desirable.

 Growers were afraid of using MOP due to its high salt index.

Salt index: SOP - 46; MOP -116.

Rate dependent!

Objective

Comparing tomato growth and yields using different K sources and rates.

Materials and Methods

Two field trials:
Gulf Coast REC.
2009 and 2010.
Spodosol, pH 6.7-7.0 and OM of 1.2%.

Materials and Methods > K sources and rates: > SOP and MOP. > 0, 50, 100, 200, 300, 400 and 500 lb/acre. Preplant: Two bands, 2 inches deep. No other preplant or drip K application. 4 weeks before transplanting. S balanced with elemental S. > Irrigation: Seepage.

Materials and Methods

Variables:

> Two harvests: 10 and 12 WAT. Fruit grading: XL and total marketable. K foliar concentrations: 4 and 8 WAT. Plant height: 4 and 8 WAT. Soil EC: 4 WAT. RCB design with 2 factors; 6 reps. Regression and standard errors.

K Sources and Rates: Plant Height

100 lb/acre

200 lb/acre

300 lb/acre

K Sources and Rates: K Conc. (4 WAT)

K Sources and Rates: K Conc. (8 WAT)

K Sources and Rates: EC (4 WAT)

K Sources and Rates: Total XL Yield

K Sources and Rates: Total Marketable Yield

Summary

Differences on tomato performance due to:

- K rates and sources.
- SOP: No injury up to 500 lb/acre of K.
- > MOP: Same as SOP up to 400 lb/acre of K.
- > EC (salt injury): Higher than 400 lb/acre of K.
- > MOP could replace a proportion of SOP in preplant formulas to lower fertilizer costs.

"Coming attractions":
What about drip K fertilization?

Thanks! Questions?

bmsantos@ufl.edu http://gcrec.ifas.ufl.edu/SantosHortProgram/index.htm