Methyl Bromide Alternatives Research Update

Andrew MacRae and Joseph Noling

University of Florida/IFAS GCREC and CREC

Current Research

- Long term sustainability of methyl bromide alternatives
 - Year 3 initiated August 2010
- Evaluation of all components of the 3-WAY fumigant system
 - Spring 2009
 - Spring 2010
 - Fall 2010

Current Research

- Impact of cultivation and herbicides on the control of yellow and purple nutsedge and their impact on the selection of a tomato fumigant system
 - Fall 2010 through Spring 2011
- Interaction of Paladin Pic Concentration via Drip Tape Applications and the movement and control of purple nutsedge
 - Fall 2010 and Spring 2011

Current Research

- Evaluation of herbicide combinations for use in tomato
 - Reflex (Fall 2009, Spring 2010, Fall 2010)
 - Matrix / Solida + Envoke + Sandea (Fall 2010 and Spring 2011)
- Competition of common purslane with tomato
 - Fall 2010 and Spring 2011
- Evaluation of new polyethylene mulch technology
 - Fall 2009, Spring 2010, Fall 2010

Evaluation of the long term sustainability of methyl bromide alternatives

Long Term Sustainability Trial

- Split-Split Plot design with a randomized complete block arrangement with four replications
- First crop main treatment = Primary fumigation
 - 1st split plot Crop (Tomato or Pepper)
 - 2nd split plot Herbicide or No herbicide
- Double crop main treatment = Secondary fumigation
- The trial design randomization will be maintained the same for the length of the study (3 years) to determine sustainability of the treatments

Trial Design cont.

- Plot size
 - Initial fumigation is 3 beds x 300 ft. long
 - 1st split plot 3 beds x 150 ft. long
 - 2^{nd} split plot 3 beds x 75 ft long
 - Secondary fumigation is 1 bed x 300 ft. long
- Plant beds are on a 5 ft. spacing with a 28 in. bed top and 9 in. bed height

Cropping System

- Years 1-3
 - Primary Crop (Summer):
 - Tomato/Pepper (transplanted)
 - Secondary Crop (Spring):
 - Summer Squash (seeded)
- Grown in a plasticulture system using drip irrigation
- Cultivars
 - 'Security 28' tomato
 - 'Patriot' pepper
 - 'Gentry' summer squash

Treatments – Initial Fumigation

- 1. Non-treated control
- 2. Methyl Bromide 67:33 at 175 lbs/A
- 3. 3 Way = Telone II at 12 gal/A + Chloropicrin at 150 lbs/A + KPam at 60 gal/A
- 4. 2 Way = Telone II at 12 gal/A + Chloropicrin at 150 lbs/A
- 5. Midas 50:50 at 160 lbs/A
- 6. Paladin Pic 79:21 at 60 gal/A

Treatments – Secondary Fumigation

- 1. Non-treated control
- 2. Inline at 35 gal/A (EC formulation of Telone C35)
- 3. Kpam at 60 gal/A

Herbicide Treatment

- Each treatment had a split plot of herbicide or no herbicide
 - Year 1 = V10142 (0.3 lbs ai/A) and Devrinol (1 gal/A)
 - Year 2 = Reflex (1 pt/A) and Devrinol 2 EC (1 gal/A)
 - Year 3 = Reflex (1 pt/A) and Devrinol 2 EC (1 gal/A)
- The herbicides were applied to a final finished bed top prior to laying plastic mulch
 - Year 1 = Canslit Metalized
 - Year 2 = Filmtec 1.2 milVIF
 - Year 3 = Pliant Blockade 1.1 milVIF

Insurance Policy Against Weeds

• For all methyl bromide alternatives, the use of herbicides is an insurance policy

Fumigant control (%)	Herbicide Control (%)	Total Control (%)
50	70% of 50% = 35	50 + 35 = 85
60	70% of 40% = 28	60 + 28 = 88
70	70% of 30% = 21	70 + 21 = 91
80	70% of 20% = 14	80 + 14 = 94
90	70% of 10% = 7	90 + 7 = 97

Application Procedures – 1st Crop

- The field was prepared using conventional tillage
- Telone II treatments were applied to a depth of 12 in. below bed top
- A pre-bed was pulled and then shaped using a 3-row rig
- The fumigants MB 50:50, Midas 50:50, Paladin Pic, and Chloropicrin were applied via shank at an 8 in. depth
- Beds were sealed using a bedpress, herbicides were applied, and then VIF mulch was applied using a speedroller
- Kpam treatments were applied via injection through a double drip tape system

Tomato Year 1 - Annual Grass Count

Tomato Year 2 - Annual Grass Count

Tomato Year 1 – Purple Nutsedge Count

Tomato Year 2 – Purple Nutsedge Count

Tomato Year 1 – Marketable Yield

Tomato Year 2 – Marketable Yield

Summary

- Paladin Pic does not control goose grass
- The addition of a herbicide provided 60 70% control of the annual grasses
- The additional herbicide helped purple nutsdege control in both years
- All systems provided satisfactory control of purple nutsedge

Summary Cont.

- In both years, the addition of herbicide increased some fumigant program's marketable yields
- The three–way system has consistently good yields

Evaluation of all components of the 3-WAY fumigant system for tomato production

Treatments

	Fumigant	Rate (Broadcast)	Placement		
1	Telone II	12 gal/A	12 inches		
2	Chloropicrin	150 lbs/A	8 inches		
3	KPam	60 gal/A	Drip applied		
4	Chloropicrin + KPam				
5	Telone II + KPam				
6	Telone II + Chloropicrin				
7	Telone II + Chloropicrin + KPam				
8	PicClor 60	250 lbs/A	8 inches		
9	PicClor 60 + KPam				
10	Telone C35	35 gal/A	8 inches		
11	Telone C35 + KPam				
12	Non-treated Control				
All treat	All treatments were placed under VIF (Filmtec 1.2 mil or Blockade 1.1 mil) and LDPE (Pliant 1.0 mil) plastic mulches				

2-WAY – Marketable Yield

Marketable yield (Medium + Large + Xlarge)

3-WAY – Marketable Yield

Marketable yield (Medium + Large + Xlarge)

Telone C35 + KPam LDPE

PicClor 60 + KPam VIF

1.00

Constant of the local

PicClor 60 + KPam LDPE

Control VIF

Herbicide Resistance

- Resistance develops most rapidly when one control method is used repeatedly over multiple growing seasons
- In tomatoes we are protected from developing our own resistance with the use of tillage in the fallow period and the option of multiple herbicide mode of actions
- Movement of resistant weeds may occur from agronomic fields to tomato fields, especially in North Florida

Herbicide Resistance

- Palmer Amaranth, a large pigweed commonly found in north Florida and throughout the Southeast, has shown multiple resistance to:
 - Glyphosate (Roundup type products)
 - ALS (Sandea, Matrix, Envoke)
- Palmer Amaranth has shown resistance to :
 - Triazines (possible cross resistance to metribuzin)
 - Dinitroanalines (Prowl H2O)
- Current control strategies in cotton rely on the use of other herbicide modes of action
 - Acetomides (Dual Magnum)
 - PPOs (Chateau, Reflex)

Reported cases of herbicide-resistant weeds in US

Herbicide Resistant Weeds

Herbicide Resistant Weeds

Do I Have A Resistance Problem?

Weed size
Moisture
Temperature
Weather

Rate
Agitation
Nozzle type
Nozzle wear

– GPA
– Calibration
– Bad luck
– Resistance

Questions?

Andrew MacRae University of Florida - GCREC

UF |UNIVERSITY of