Early Season Control of Citrus Leafminer, *Phyllocnistis citrella* (Stainton) Lepidoptera: Gracillariidae)

Moneen Jones and Phil Stansly IFAS/UF-SWFREC

SWFREC, Immokalee FL

Citrus leafminer – <u>Phyllocnistis citrella</u> <u>Stainton</u> (CLM) – Why is it important?

- Damage by leafmining leads to:
 - Reduction in photosynthetic capacity (Pena et al. 2000)
 - Malformation of leaves

http://www.ipmimages.org

cisr.ucr.edu

garden-view.com

 Increased susceptibility to the Asiatic citrus canker pathogen, Xanthomonas axonopodis py. citri (Bergamin-Filho et al. 2000).

Overall Project Objectives

• Evaluate effectiveness of early season sprays for CLM to reduce subsequent generations of CLM

• Evaluate insecticides and application methods in field trials

Pheromone Traps

- Monitor adult flight and peaks
- Assess how well management programs are working
- Trap uses:
 - Correlate leafminer damage to moth trap captures
 - Provide a 'baseline' for future management decisions
 - Determine if any changes need to be made in management practices.

Methods: Trap monitoring and Damage Assessment

- 4 groves (oranges/grapefruit)
 - Trial 1: Compared applications of Intrepid 28 Feb (first flush) 14 March (peak flight) and grower standard. 15 traps/block. 1trap/ac.,
 - Trial 2: Compared 2 spray timings of Intrepid before and after peak flight activity. 20 traps/block. 1 trap/ac.
 - Trial 3. Compared trap densities: 1trap/2.5 ac (Flame grapefruit), 1trap/3.5 ac (Ray Ruby grapefruit), 1trap/5 ac (Ray Ruby grapefruit)
 - Replicated trial: Compared aerial and ground applications of Intrepid to Delegate and Untreated (Hamlins), 3 traps/13ac plot
- Moth flight monitored to determine seasonal spatial and temporal flight patterns, and relative density
- CLM damage assessed by using modified Horsfall Barratt Scale
 - Randomly selected 50 trees/stop; two stops per pheromone trap row
 - Graded damage on upper/lower surfaces of 5 terminal leaves of flush

Count these 20 squares, multiply by 4.5

Three Application Timings of Intrepid

Treatment 1:

Sprayed at first spring flush Intrepid 2F + 435oil (2/28)

- Treatment 2: Sprayed according to trap count Intrepid 2F + 435 oil (3/14)
- Grower standard

Peak Flight vs Flush Spray Comparison

Two Spray Timings- Before and After Peak Flights

Each block 20 acres Treatment: Sprayed according to pheromone trap counts Grower Standard: Sprayed according to calendar 1 rep, 20 traps each block

CLM Flight with Two Spray Timings

Efficacy of Pheromone Trap Spacing

 No difference in spray application
3 sized blocks - one 60ac, 7ac, and 2.5ac
Traps spaced 5ac, 3.5ac, and 2.5ac
Sprayed according to peak flight

Aerial vs Ground Applications of Intrepid

CLM Damage - July 2011 0.400 Rating ODelegate WG + 435 Oil 0.350 (aerial) = Red 0.300 Wean CLM Dame CLM DAm OIntrepid 2F + 435 oil (aerial) = Yellow OGround application of Ι Intrepid 2F + 435 oil = 1 I Ι Pink I OUntreated check = Intrepid Ground Intrepid Ground Untreated Intrepid Aerial **Delegate** Aerial Untreated Intrepid Aerial **Delegate Aerial** White O3 reps 800 700 20-Jul 29-Jul Delegate **Date and Treatment** 600 Aerial Intrepid Moths/Trap/Day Ground Intrepid 500 Untreated 400 300 200 100 0 ${}^{19}-\mathcal{M}_{4}^{4}-\mathcal{M}_{9}^{9}-\mathcal{M}_{4}^{7}-\mathcal{M}_{9}^{8}-\mathcal{M}_{1}^{13}-\mathcal{M}_{9}^{8}-\mathcal{M}_{1}^{13}-\mathcal{M}_{9}^{13}-\mathcal{M}_{9}^{13}-\mathcal{M}_{9}^{13}-\mathcal{M}_{9}^{12}-\mathcal{M}_{1}^{2}-\mathcal{$

Evaluation of Spray Volume & Sprayer Type on Efficacy of Insecticides

- Trial conducted by: Barry Kostyk and Scott Croxton
- Pringle Farm, Immokalee FL; 22 yo Murcott trees @ 151 trees/acre
- Sprayers Airblast (100gpa) vs Proptec (5gpa)
- Treatments Delegate, Untreated, Intrepid 2F (with and without Latron B1956)
- Rates 4oz and 8oz

- Larvae examined 3dat (21 Jul), 10dat (28 Jul), and 17dat (4 Aug)
 - 10 randomly selected new shoots
 - 5 leaves per shoot

Leaf surface damage rated -0 = none

1 = < 10% 2 = 11 - 25% 3 = 26 - 50%4 = > 51%

Treatment Results

CLM Damage with Intrepid 2F

Treatments

Evaluation of Spray Volume & Sprayer Type on Efficacy of Insecticides - Results

Significantly fewer larvae observed with all treatments compared to untreated at 3 and 10 DAT

 Only the 2 Delegate treatments and Intrepid sprayed with Latron B1956 at 5gpa had significantly fewer larvae at 17 DAT

All treatments reduced leaf damage caused by CLM

- Least damage Delegate
- Intrepid (100gpa) with or without Latron or at 5gpa with Latron
- Generally better results spraying Intrepid with Airblast compared to Prop Tec

CLM Management – Recommended Products

A.I.	Product	Restricted Entry Interval	Pre-harvest Interval	Psyllid	Leafminer
Abamectin + oil	Agri-mek 0.15EC	12h	7d	++	+++
Diflubenzuron + oil	Micromite 80WGS	12h	21d	++	+++
Methoxyfenozide	Intrepid 2F	4h	1d		+++
Petroleum oil	435	12h	0	+	++
Spinetoram + oil	Delegate WG	4h	1d	+++	+++
Thiamethoxam	Actara 25WG	12h	0	+++	+
Thiamethoxam	Platinum 75SG	12h	0	+++	+++
Imidacloprid (soil drench)	Admire Pro	12h	0	+++	+++
Thiamethoxam+ Abamectin + oil	Agri-Flex	12h	7d	??	??
Chlorantraniliprole +Thiamethoxam	Voliam-Flexi	12h	1d	??	??

Preliminary Conclusions

- An early spray (March) of Intrepid 2F lowered numbers of adult moths caught for 2 months.
- Timing CLM sprays at first flush or at first peak flight significantly lowered adult moth catch. There was also significantly less CLM damage in spring flush assessment
- Pheromone traps spaced between 1 per 2.5ac 5ac can be used to time insecticide sprays
- Aerial applications of Intrepid worked almost as well as ground applications in controlling CLM
- Moth flight and CLM damage information can be used as a baseline for future management decisions
- Intrepid performed best when applied at 100gpa or at 5gpa with a non-ionic surfactant

Thanks to:

- Bryant Cawley
- Robert Riefer
- Miriam Ortez
- Kat Perez
- Zack Lahey

Additional Thanks to:

Coffee!!!

Questions?

