Scouting Citrus for Pests and Beneficials Phil Stansly UF-IFAS, Immokalee: http://www.imok.ufl.edu/entlab/ **Psyllids Predators** Parasitoids CLM **Scales** Pathogens Mites Thrips

Pesticide Use in Florida Citrus Before HLB

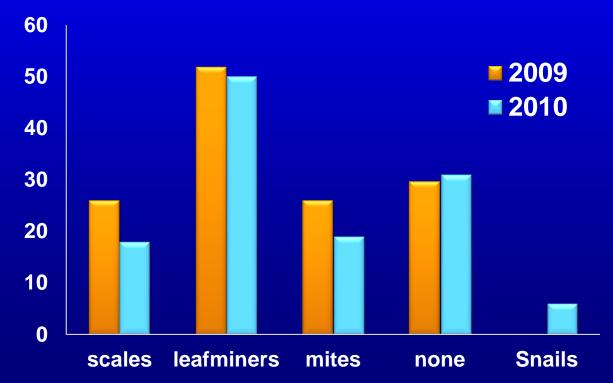
- Most pests under biological control
- Most process fruit received 1 or 2 oil sprays, primarily for greasy spot
- Copper 2nd most used pesticide
- Acaracides used primarily on fresh fruit

Insecticide Use in SW Florida Citrus: 2011

Average applications per year: 7.3

MOA www.irac-online.org	MOA	% Total
Carbamates	1A	7.4
Organophosphates	1B	35
Pyrethroids	3A	26
Neonicotinoid	4A	7.4
Abamectin	6	13
Micromite	15	8.4
Movento	23	3.2
Total	4%	100%

Grower Survey: Increase of Secondary Pests:



% Responding



Key Florida Citrus Pests and Their Biological Control Agents

- Mites: spider (true & false), broad, spider
 - Hirsutella, mites, ladybeetles
- Thrips
 - Minute pirate bugs, mites
- Leafminer
 - Ants, Spiders, Ageniaspis
- Root weevils
 - Nematodes
- Scales: armored, soft
 - Ladybeetles, *Aphytis* spp.
- Asian Citrus Psyllid
 - Ladybeetles, Tamarixia

Predators: Ladybeetles -Lacewings, Spiders

Funnelweb Jumping

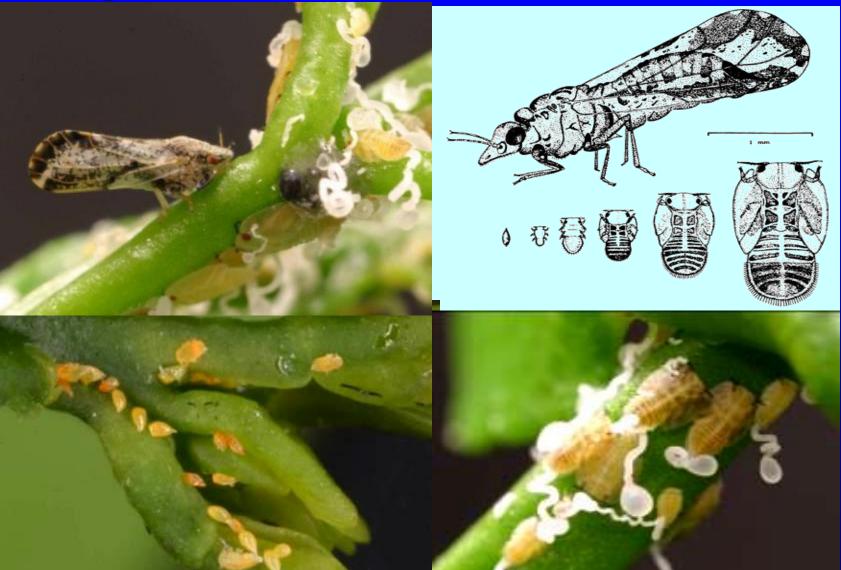
Spitting

Velox


Predaceous mites: Phytoseiids

Parasitoids: Parasitic wasps

Pathogens: Fungi


Nematodes

Citrus Pests: Sucking Insects

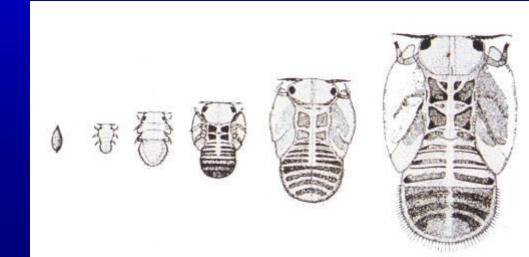
	Nymphs	Adults	Honey- Dew?
Psyllids	Wingpads only Stay on flush	Males and females alike	Yes, waxy secretion (nymphs)
Aphids	Like adults	Usually no males. Some winged	Yes
Whiteflies	Immobile after crawler- scalelike	Males and females winged	Yes
Armored Scales	Only crawler mobil	Cover separates, Males winged	Νο
Soft Scales	Can move when disturbed and at molts	Cover attached, Males winged	Yes
Mealy bugs	Retain mobility	Waxy filaments. Males winged	Yes
Stinkbugs	Like adults except for wings	Males and females alike	Νο

Asian citrus psyllid, *Diaphorina citri* (ACP) first detected SE Florida June 1998. Presently found throughout FL and TX, Mexico, and S. America.

Adult Feeding, Longevity Adults can feed on both new and mature leaf flushes

 Adults primary over-wintering stage
 Mean longevity of females increases with decreasing temperature within the range 59-86°F (15-30°C)

- Adults need to feed on young flush to mature eggs. Feeding of both adults and nymphs causes leaf distortion.
- Eggs are laid <u>ONLY</u> in young flush, are about 0.3 mm long and almond shaped.
- Eggs are pale when laid, turn yellow then orange as they mature. Often difficult to see.



Nymphs and nymphal feeding

- Nymphs feed ONLY on new developing flush, flower stems and shoots
- There are 5 nymphal stages ("instars"), recognized by size and development of wing buds.
- Nymphs can be readily identified by their yellow to orange coloration, large lateral wing pads in later stages and red eyes.

Nymphs secrete honeydew packaged in wax tubes normally removed by wind and/or ants.

Huanglongbing (Yellow Shoot Disease) HLB, orGreening Disease caused by
Candidatus liberibacter asiaticusDouble cell wall demonstrates
gram negative character.

Recognizing HLB

Micronutrient deficiency (symmetric)

HLB ("blotchy" mottle)

Disease Progression

Evolution of Symptoms

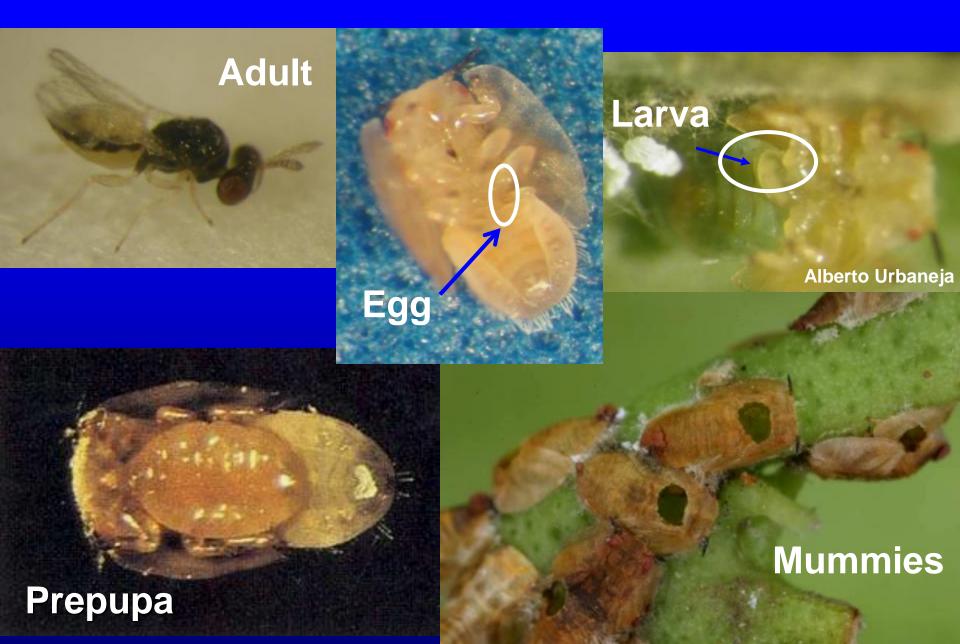
Small, asymmetrical, green fruit, aborted seeds, fruit drop.

Fruit Drop

Coccinellid Predators of D. citri in Florida

Harmonia axyridis

Curinus coeruleus


Cycloneda sanguinea

Olla V-nigrum

Psyllid Predators Lacewings

Parasitoid: Tamarixia radiata

Scouting Principles

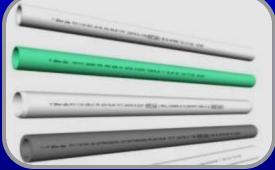
- "Random" Sample
- Representative Sample
- Deliberate Method
- Uniform & Thorough Reporting

Monitoring Commercial Groves for Psyllids

Tap Sample
Do first
10 per stop

• Visual inspection

- Do next
- 10 flush per stop


http://swfrec.ifas.ufl.edu/entlab/programs/index.htm

Equipment

Clipboard: For catching adults and recording data

Piece of PVC (optional) For hitting branch

Hand lens: For seeing small eggs and nym

Sample location

10 Stops
- 5 border
- 5 inside

1 Block

10 trees

Tap Sampling

- 3 taps per sample
- 1 tap sample per tree
- I0 trees per stop
- It is a stops per block (5 in the borders + 5 inside)

Visual inspection

- Look for young flush (shoots)
- Observe 10 flush per stop
 If 10 not available record number found in 20 trees
- Record
 - -# of infested flush (any psyllid stage)
 - —# of observed flush
 - -# of trees needed to find 10 flush (Max 20)

Datasheet

http://swfrec.ifas.ufl.edu/entlab/programs/index.htm

	UNIVERSITY of FLORIDA IFAS Extension uted by: Variety: ve: Tree size :													Imstructions: 1. Hold clipboard 1 foot below branch, strike branch 3 times and note number of psyllid adults falling on clipboard in box. Mark a vertical line in the appropriate box for any beneficials seen. 2. Continue for 10 trees and note total number of adult psyllids, greening trees and beneficial seen. 3. Observe 10 young aboots (flush) and note how many are infested with any stage of ACP. If 10 shoots cannot be found in 20 trees, note how many found. 4. Note how many trees were searched to find flush you observed. 5. Note other pests or other observations. 6. For more information see the "Sampling for Asian Citrus Psyllid (ACP)" Field sheet.																
ate:	_	_	1	Bloc	k:		_		La	it:	ize .		N	1	Lon	g:			W	0.	For n	kore in	torma	tion see	0.006.1.5	sampling	for Asian	Citrus Pi	iyilid (AC	Py" Pield sheet.
	Number of ACP per									TOTAL											total fushes	flushes	bserved	to find	Peetless Peetles Chieves Conteer Conte				Notes and	
4-Stop	-	2	3	4	8	6	7	8	6	10	0	1	2	3	4	5	6	7	8	6	10	Greening total	# infested flushes # Flushes observed	# of trees	Lady beetles	Trushbugs	Spiders	Other	other pest observations	
1																														
2			Γ									Γ																		
3																														
4			Γ							-		Γ																		
5																														
6			Γ																										-	
7			Γ																											
8																														
9																														
10																														

Scouting for Psyllids: Summary

- Adults first priority
 - Responsible for spread of HLB
 - Target of most sprays
 - Can scout whether or not there is flush
 - Tap test rapid and effective
 - 10 trees per location, 10 locations per block
- Flush evaluation
 - Percentage infested any stage
 - 10 flush per location if possible
 - Note number of trees searched.

Other Sucking Insects

	Nymphs	Adults	Honey- Dew?
Aphids	Like adults	Usually no males. Some winged	Yes
Whiteflies	Immobile after crawler- scalelike	Males and females winged	Yes
Armored Scales	Only crawler mobil	Cover separates, Males winged	No
Soft Scales	Can move when disturbed and at molts	Cover attached, Males winged	Yes
Mealy bugs	Retain mobility	Waxy filaments. Males winged	Yes
Stinkbugs	Like adults except for wings	Males and females alike	No

Green citrus aphid: Aphis spireacola

Citrus Aphids

Brown citrus aphid: Toxoptera citricida

Citrus Tristeza Virus

Citrus Whitefly and Dialeurodes Cloudywing Whitefly spp.

Parasitic wasp

"Friendly" Fungus

Wooly Whitefly

Aleurothrixus floccosus

Nesting Whitefly Paraleyrodes minei

Citrus Blackfly

Aleurocanthus woglumi

Amitus hesperidum

UGAS

Armored Scales

Florida red

Purple

Glover

Lepidosaphes

Chrysomphalus aonidum

Chaff scale

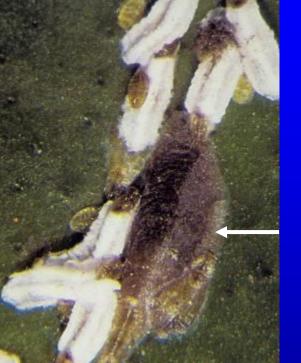
Green spots on fruit

Parlatoria pergandii Purple Scale (L. beckii)

Causes die back

Armored scale predator twice-stabbed ladybeetle *Chilocorus stigma*

Florida Red Scale Parasitoid Aphytis holoxanthus



Other Armored Scales

Snow Unaspis citri Trunk, main scaffold limbs

Fern Pinnaspis aspidistrae Outer Canopy

Mid Canopy Pinnaspis

 \mathcal{Q}

Lesser

Snow

Lesser Snow Scale Havoc

Controlled by Chilocorus circumdatus

Soft Scales: Black Scale Saissetia spp

- "H" pattern
- Nymphs on leaves, twigs
- Adults on larger limbs
- Copious honeydew
- Ash ladybeetle

Azya orbigera

Citrus Mealybug Planococcus citri

Cryptolaemus montrouzieri

Mealybug destroyer

Stink Bugs and Leaffootted Bugs

- Thin skinned varieties most susceptible (Hamlin)
- Perforate fruit, introduce pathogens
- Build up on weeds

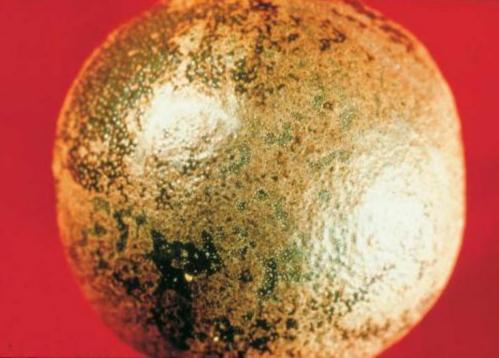
Mite Pests of Citrus

Rust mites

- Citrus rust mite Phyllocoptruta oleivora
- Pink rust mite Aculops pelekassi
- Spider mites
 - Citrus red mite Panonychus citri
 - Texas spidermite Eutetranychus banksi
- False Spider Mites
 - Brevipalpus spp
- Broad mites
 - Polyphagotarsonems latus

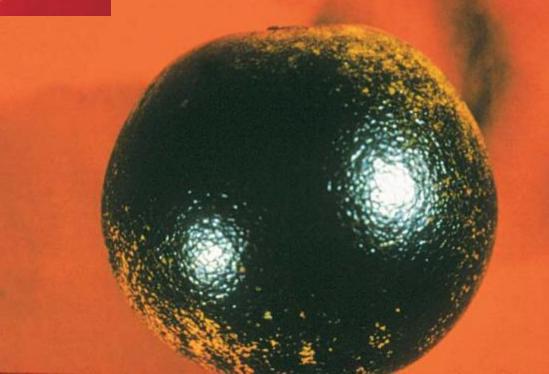
Pink Rust Mite Aculops pelekassi

Rust Mites


Primarily problems in
fresh fruit
Flared by copper and
broad spectrum
insecticides, especially

pyrethroids

Citrus Rust Mite *Phyllocoptruta oleivora*


Citrus Rust Mite Phyllocoptruta oleivora Biological control by mites, ladybeetles and **Hirsutella** Disrupted by insecticides and copper.

Early damage: Sharkskin

Late damage: Bronzing

Standarize the Lensfield

Lensfield size depends on:

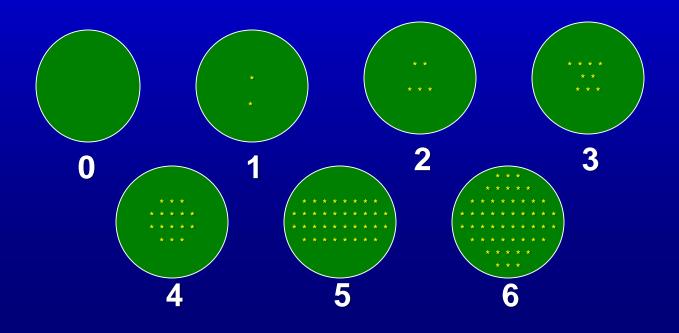
- Magnification
- Distance between eye and eyepiece

Scout and Note Middles and Swales

Florida Pest Management Guide*:

- Process: Every 2-3 Weeks
- Fresh: every 10-14 days
- 80 Lensfields /block (10-40 acres)
 - Stops/ per block = 10
 - Trees per stop = 4
 - Fruit/tree = 2
 - Lens fields per fruit = 1
 Sun-shade transition

Possible stops through block



- Location of Fruit: all 4 quadrants, midway in canopy
- Record Mites/lens field
- Provides < 25% variation if CRM > 10/cm²
- Thresholds process: 6 CRM/ LF Caution 10 CRM/LF - Spray
- Threshold fresh: 2 CRM/LF Spray

*2011 Florida Citrus Pest Management Guide, Publication SP-43, UF Gainesville http://edis.ifas.ufl.edu/cg002

What the Heck is the H-B Rating System?

- Developed by Horsfall & Barratt (1945) to measure disease incidence.
- Based on density recognition rather than individual counts.

Spider Mites:

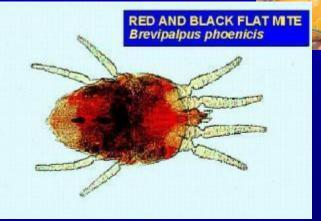
- Dry weather
- Upper surfaces of young hardened leaves
 Stippling, Firing

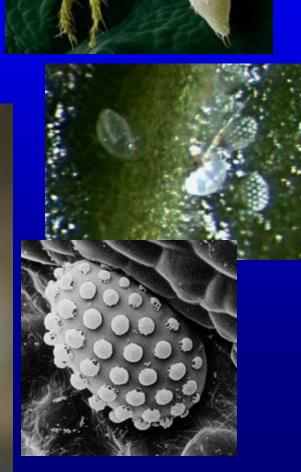
Texas citrus mite

Citrus red mite

Scouting for Spider Mites

- Follow CRM sample pattern
- 4 leaves per tree
- Threshold 5-10/leaf, depending on :
- Population trends
 - Predominantly males
 - Nymphs and females
- Weather
- Tree Condition


False spider mite *Brevipalpus* spp: Vector of Leprosis (not yet in US



Broad mite Polyphagotarsonemus latus

Mostly a pest of lemons and limes

Other Citrus Pests

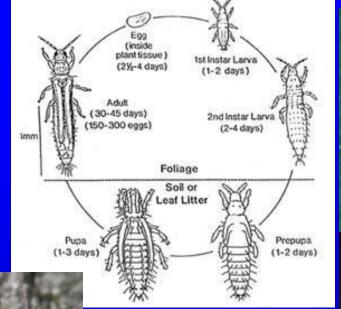
- Citrus leafminer
- Thrips
- Fruit flies
- Grasshoppers and the like
- Root weevils

Citrus Leafminer, Phyllocnistis citrella

Predators Ants Spiders Lacewings

Ageniaspis

Canker – Leafminer Interaction



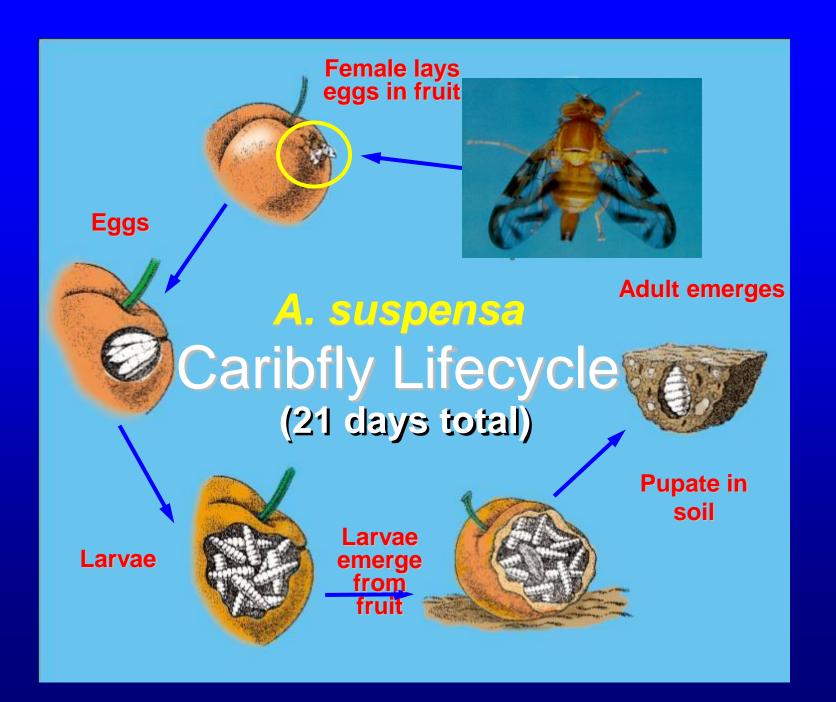
Indigenous ectoparasitoids

Flower Thrips

Mite Predator

Ring spot

Grapefruit


Fruit Flies

Caribfly Anastrepha supsensa **Present in Florida**

Medfly *Ceratitus capitata* Not presently known to be in Florida

Medfly C. capitata

Many hosts

- Few effective natural enemies
- Control with toxic baits, Mass trapping, sterile male release
- Baits disruptive to biological control

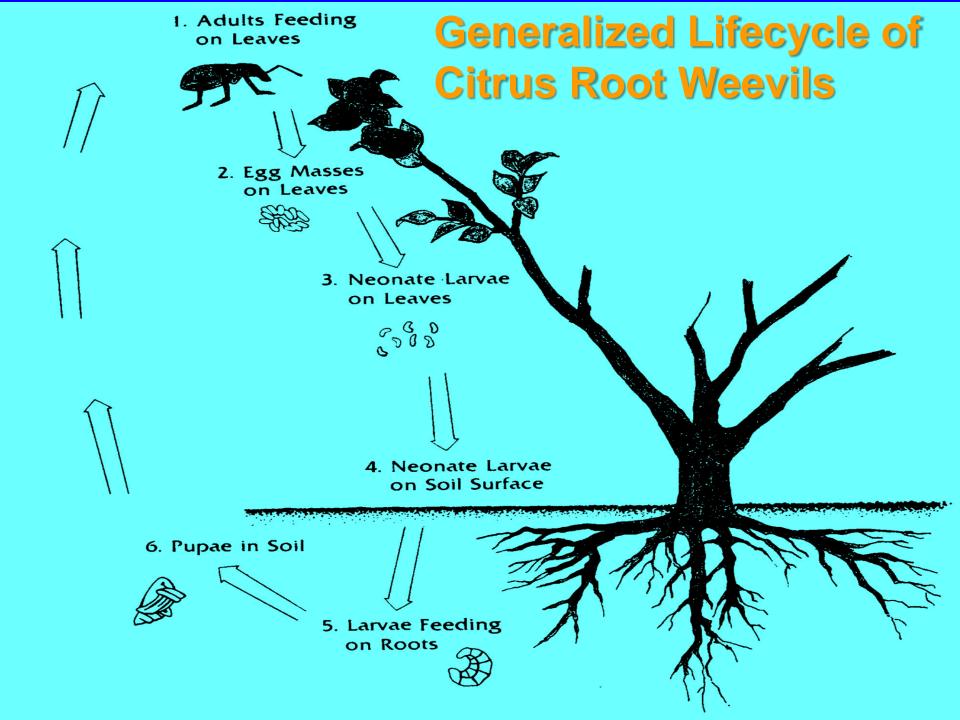
Grasshoppers, Katydids, Crickets

- Build up on weeds.
- Large nymphs most damaging
- Foliar damage irregular (like orange dog)
- Occurrence usually localized in grove

Stink Bugs and Leaffootted Bugs

- Thin skinned varieties most susceptible (Hamlin)
- Perforate fruit, introduce pathogens
- Build up on weeds

Root Weevils:



Blue-green weevil

Diaprepes: Life cycle and damage to citrus roots

Root damage (larvae)

Leaf Damage

(adults)

Sri-Lanka Weevil: *Myllocerus undatus*

Similar to Little Leaf Notcher (Artipus) but...

Artipus floridanus

César Monzó Moneen Jones

H. A. Arevalo

Acknowledgements

- Citrus Research and Development Foundation (\$\$)
- Industry partners (many)

SWFREC Entomology Team

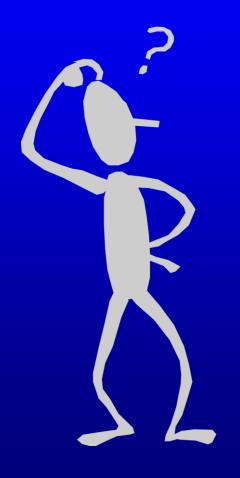
Zach

Lahey

Cameron Brennan

Mauricio Pinto

Monica Triana


Robert Riefer

Joel Mendez

Questions? ¿Preguntas?

